شبیه‌سازی و مدل‌سازی دینامیک کندوسوز لیزری عنصرهای تیتانیم، سیلسیم و تنگستن با لیزر تپی نئودیمیم یاگ در محیط آب مقطر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1. گروه فیزیک، دانشکده‌ی علوم، دانشگاه ارومیه، صندوق پستی: 165-57153، ارومیه ـ ایران

2 2. گروه فیزیک، دانشکده‌ی علوم پایه، دانشگاه تربیت مدرس، صندوق پستی: 175-14115، تهران ـ ایران

3 3. دانشکده‌ی فیزیک، دانشگاه صنعتی شریف، صندوق پستی: 9567-11365، تهران ـ ایران

چکیده

یکی از روش­های سریع، ایمن و پاک برای تولید نانوذره­های کلوییدی با ویژگی­های مختلف ساختاری و نوری، روش کندوسوز لیزر تپی در محیط مایع است. در صورتی­که، دیگر روش­های ساخت نیاز به دمای بالا، زمان واکنش طولانی و رویه­های شیمیایی چند مرحله­ای دارند. این مقاله شبیه­سازی فرایند کندوسوز لیزر تپی و عامل­های مؤثر بر ویژگی­های نانوذره­های تولیدی عنصرهای تیتانیم، سیلسیم و تنگستن در محیط آب مقطر به ارتفاع یک سانتی­متر از سطح نمونه را مورد بررسی قرار می­دهد. بدین­منظور لیزر نئودیمیم- یاگ تپی با پهنای زمانی ns، طول موج­های 1064 و 532nm و قطر کانونی 200 mm به کار گرفته شد. هم­چنین محاسبه­ها با در نظر گرفتن تأثیر محیط آب مقطر واثر تعداد مختلف تپ لیزر در نرخ کندگی مورد بررسی قرار گرفت. توزیع دما روی سطح فلز، میزان کندگی و شاریدگی آستانه­ی کندگی با مدل انتقال حرارت دو سیالی و توسط نرم­افزار کامسول مولتی فیزیکس به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic modelling and simulation of laser ablation of titanium, silicon and tungesten elements by pulsed Nd: YAG laser in a distilled water

نویسندگان [English]

  • M Pashazadeh 1
  • E Irani 2
  • M.M Golzan 1
  • R Sadighi- Bonabi 3
چکیده [English]

Pulsed laser ablation in liquid solution is a fast, safe and clean method for producing colloidal nanoparticles with different structural and optical characteristics. However, the other synthesis methods require high temperatures, long reaction times and multi-step chemical synthetic procedures. In this paper, the simulation of nanosecond pulsed laser ablation process and effective parameters on the Titanium, Silicon, and Tungsten elements in distilled water environment at the height of 1 cm from the surface of the metal is investigated. For this purpose, the pulsed Nd:YAG laser with nanosecond time duration, wavelengths of 1064nm and 532nm, a focal diameter of 200 mm is used. The simulation is based on considering the effects of the water environment and number of laser pulses. The distribution of temperature on the metal surface and the threshold fluence is determined by two-fluid heat transfer model using Comsol Multi physic Package.

کلیدواژه‌ها [English]

  • laser ablation
  • Titanium
  • Silicon
  • Tungesten
  • Nd:YAG laser

1. V. Amendola, and M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,  Phys. Chem. Chem. Phys. 11,3805 (2009).

2. S. Cheng-Yu et al.  Zhigilei Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study,  J. Phys. Chem. C  121,16549 (2017).

3. V. Oliveira, and R. Vilar, Finite element simulation of pulsed laser ablation of titanium carbide, Applied Surface Science 253,7810 (2007).

4. H. S. Lim, and J. Yoo, FEM based simulation of the pulsed laser ablation process in nanosecond fields, Journal of Mechanical Science and Technology 7,1811 (2011).

5. F.J. Al-Maliki, Detection of Random Laser Action from Silica Xerogel Matrices Containing Rhodamine 610 Dye and Titanium Dioxide Nanoparticles,  Advances in Materials Physics and Chemistry 2, 110 (2012).

6. A. M. Brito-Silva et al. Random laser action in dye solutions containing Stöber silica nanoparticles, Journal of Applied Physics 108, 033508 (2010).

7. F. Luan et al. Lasing in nanocomposite random media, Nano Today  10, 168 (2015).

8. A. Bogaerts et al. Laser ablation for analytical sampling: what can we learn from modeling,Spectrochimica Acta Part B 58, 1867 (2003).

9 Z. Xianzhong et al. Ultraviolet femtosecond and nanosecond laser ablation of silicon : ablation efficiency and laser-induced plasma expansion, (2004).

10. J. Jeon et al. The Effect of Laser Pulse Widths on Laser-Ag Nanoparticle Interaction: Femto- to Nanosecon, Lasers Appl. Sci. 8, 112 (2018).