تضعیف گامای پرانرژی ثانویه ی میدان نوترونی با بهره گیری از یک حفاظ کامپوزیتی تقویت شده ی بدون سرب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای،

2 مجتمع پژوهشی ایران مرکزی، پژوهشگاه علوم و فنون هسته ای

3 پژوهشکده چرخه سوخت، پژوهشگاه علوم و فنون هسته ای

4 پژوهشکده‌ی نانوفناورب، دانشگاه امیرکبیر

چکیده

 رزین اپوکسی، پلی­مری گرماسخت است که علاوه بر مقاومت حرارتی و مکانیکی بالا، به دلیل قابلیت کاربری پیوسته در برابر تابش‌های نوترون و گاما، بسیار مورد توجه صنعت هسته‌­ای قرار گرفته است. در حفاظ‌‌ ­سازی یک میدان نوترونی، تولید فوتون­‌های پرانرژی گاما باید در نظر گرفته شود. به منظور تضعیف این فوتون­‌ها، از عناصری با عدد اتمی بالا در بستر پلیمری استفاده می­‌شود. به دلیل مشکلات زیادی که حفاظ­‌های سربی دارند، پژوهش‌­ها به سمت حفاظ‌های بدون سرب سوق پیدا کرده است. در این پژوهش با استفاده از روش مونت­‌کارلو، قدرت تضعیف فوتون‌­های ثانویه­‌ی یک حفاظ پلی­مری بر پایه­‌ی رزین اپوکسی تقویت شده با 5، 10 و 20 درصد وزنی از ریزذرات اکسید تنگستن و اکسید سرب بدون حضور جاذب نوترونی مطالعه شد. نتایج نشان می‌­دهد در شرایط یکسان درصد وزنی، حفاظ کامپوزیتی تقویت شده با تنگستن می‌­تواند قدرت حفاظ­ سازی بهتری حاصل نماید. افزایش بیش­تر درصد وزنی ماده‌­ی تقویت­‌کننده، ضمن افزایش وزن حفاظ کامپوزیتی، از قدرت حفاظ می­‌کاهد.

کلیدواژه‌ها


عنوان مقاله [English]

High Energetic Gamma Attenuating from a Neutron Field Using a Lead Free Reinforced Composite

نویسندگان [English]

  • S.P Shirmardi 1
  • R Adeli 2
  • S.J Ahmadi 3
  • S Mazinani 4
چکیده [English]

Epoxy resin as a thermoset polymer has a suitable thermal resistance with high mechanical properties. In addition, the resin exhibits good continuum presentation for both neutron and gamma beams. Consequantly, it is the primary concern in the nuclear industry. In a neutron shielding, energetic secondary gamma products are unavoidable. For attenuating these gamma rays, the elements with high atomic number in the polymeric matrix are inevitably used. Because of various problems of lead shield, studies are inclined to the lead free shielding. In this investigation and, by using Monte Carlo method, the ability of secondary gamma attenuating was studied on a polymeric shielding based on reinforced epoxy with different weight percentages of 5, 10 and 20 of tungsten oxide and lead oxide without any neutron poisons. The results show that by the same weight percentage, the reinforced composite shield with tungsten oxide could afford better shielding performance. The more increase in the weight percentage of the reinforced material, in addition to an increase in the weight of the shield, reduce the ability of shielding performance.

کلیدواژه‌ها [English]

  • Neutron field
  • High energetic secondary gamma
  • Epoxy
  • Lead
  • Tungsten
  • Monte Carlo

[1] J.W. Kim, B.C. Lee, Y.R. Uhm, J.H. Jun, Polymer nanocomposite based multi-layer neutron shields, Nuclear Physics and Radiation Physics, (S73) (2010).

 

[2]        A. Mortley, Radiation effects on the properties of a polyurethane/epoxy graft interpenetrating polymer network: An investigation into the application of polymers in the fabrication of containers to store radioactive waste Environmental Science & Technology, (2005) 182.

 

[3]        R. Lo Frano, G. Pugliese, G. Forasassi, Thermal analysis of a spent fuel cask in different transport conditions. Energy, 36(4) (2011) 2285-2293.

 

[4]        R.C. Singleterry, S.A. Thibeault, Materials for low-energy neutron radiation shielding, NASA/TP-2000-210281, (2000), NASA/TP-2000-210281.

 

[5]        J. Kim, J.H. Jun, Y.J. Bae, Epoxy resin composition for neutron shielding, and method for preparing the same, Google Patents (2014).

 

[6]        M.K. Lee, J.K. Lee, J.W. Kim, G.J. Lee, Properties of B4C–PbO–Al(OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields. Journal of Nuclear Materials, 445 (2014) 63–71.

 

[7] O.G. TurgayKorkut, E. Kam, W. Brostow, X-ray, gamma, and neutron radiation tests on epoxy-ferrochromium slag composites by experiments and monte carlo simulations, International Journal of Polymer Analysis and Characterization, 18(3) (2013) 224–231.

 

[8] N.R. Paluvai, S. Mohanty, S.K. Nayak, Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. Journal of Applied Polymer Science, 132(24) (2015) 15.

 

[9]        M.Q. Zhang, G. Shi, M.Z. Rong, B. Wetzel, K. Friedrich, Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear, 256 (2004) 1072–1081.

 

[10]      J. Abenojar, M.A. Martinez, F. Velasco, Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin, The Journal of Adhesion, 85(4-5) (2009) 216-238.

[11]      H. Cember, T.E. Johnson, Introduction to health physics, Fourth Edition. (2009) Mc Graw-Hill Companies.

 

[12]      W. Kraus, Boron containing polymers for radiation shielding. Polymer preprints, 34 (1993) 592-559.

 

[13]      V. Harish, N.N.T. Niranjana Prabhu, K.T. Varughese, Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications, Journal of Applied Polymer Science, 112 (2009) 1503–1508.

 

[14]      V.I. Pavlenko, V.M. Lipkanskii, R.N. Yastrebinskii, Calculations of the passage of gamma-quanta through a polymer radiation-protective composite, Journal of Engineering Physics and Thermophysics, 77(1) (2004).

 

[15] H.S.a.W.S. Ginell, Nuclear and space radiation effects on materials-space vehicle design criteria, NASA-SP-8053, (1970).

 

[16] Monte Carlo N-Particle Transport Code System. CCC-701/MCNP4C2. (Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN), (2001), Los Alamos National Laboratory.

 

[17]      E.A. Lorch, Neutron spectra of "'241Am/B, "241Am/Be,241Am/F, "242Cm/Be, " 238pu/13C and 252Cf isotopic neutron sources, International Journal of Applied Radiation and Isotopes, 24 (1973) 585-591.

 

[18]      B. Chilton, J. Kenneth Shultis, R.E. Faw, Principles of radiation shielding, (1984) New Jersey: Prentice-Hall, Inc. 493.

 

[19]      R.B. Firestone, In database for prompt gamma-ray neutron activation analysis, International Atomic Energy Agency (2014).