پیش‌یابی و بررسی خواص الکتریکی نانو‌ساختار دوبعدی سیلیسیم ژرمانیم فسفید (4SiGeP) با استفاده از روش ابتدا به ساکن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1. گروه فیزیک، دانشگاه آزاد اسلامی واحد کرمانشاه، صندوق پستی: 671899751، کرمانشاه ـ ایران

2 2. گروه فیزیک، دانشکده علوم، دانشگاه یاسوج، صندوق پستی: 7591874934، کرمانشاه ـ ایران

چکیده

این مقاله نانوساختار دوبعدی سیلیسیم ژرمانیم فسفید (4SiGeP) را در فاز پنج­ گوشی با استفاده از محاسبه ­های ابتدا به ساکن مبتنی بر نظریه­ ی تابعی چگالی و با بهره­ گیری از نرم ­افزارهای وین و کوانتوم اسپرسو و متریالز استودیو پیش­ یابی نموده و خواص الکتریکی آن را مورد بررسی قرار می ­دهد. پایداری ترمودینامیکی، دینامیکی و گرمایی این نانو­ساختار به ترتیب با محاسبه­ ی انرژی همبستگی ساختار، نمودار پاشندگی فونونی و شبیه ­سازی دینامیک مولکولی ارزیابی و تأیید شده است. نتیجه­ های محاسبه­ ها نشان می­دهد که تک لایه ­ی سیلیسیم ژرمانیم فسفید یک نیم ­رسانای غیر­مستقیم با گاف انرژی حدود eV 95/1 است که با اعمال کشش و کرنش دوبعدی قابل تنظیم است. ویژگی­ های منحصربه ­فرد این نانو­ساختار امکان استفاده از آن را در ابزارهای الکترونیکی در مقیاس نانو و به طور خاص در حسگرهای الکترو­مکانیکی فراهم می­ کند.

کلیدواژه‌ها


عنوان مقاله [English]

First principles prediction of 2D SiGeP4 monolayer: electronic properties investigation

نویسندگان [English]

  • M Naseri 1
  • J Jalilian 2
  • Kh Salehi 1
چکیده [English]

Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted broad interest due to their outstanding electronic and optical properties. In 2014, a new carbon allotrope named penta-graphene ids theoretically was predicted. The advent of penta-graphene inspired various explorations for new pentagonal 2D nanostructures. In this paper, by using the first- principles calculations based on the density functional theory as implemented in Wien2K, Quantum Espresso, and Material Studio codes, a new two- dimensional pentagonal SiGeP2 monolayer is predicted. The structural, kinetic, and thermal stabilities of the newly found monolayer are evaluated and confirmed by cohesive energy computation, phonon dispersion calculation, and first- principles molecular dynamics simulations, respectively. The electronic properties investigations reveal that the predicted monolayer has a strain tunable indirect bandgap of 2.95 calculated by the GGA-PBE level of theory. Through, the presence of a narrow phonon bandgap between acoustic and optical modes suggests its application in electro-mechanical resonators.

کلیدواژه‌ها [English]

  • 2D nano structure
  • SiGeP4
  • Indirect Semiconductor
  • Phonon Dispersion
  1. K.S. Novoselov, et al, Electric field effect in atomically thin carbon films, Science. 306, 666 (2004).
  2. S. Zhang,  et al, Penta-graphene: A new carbon allotrope,  Proc. Natl. Acad. Sci. 112, 2372 (2015).
  3. S. Cahangirov, et al, Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium, Phys. Rev. Lett. 102, 236804 (2009).
  4. M. Wu, et al, Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family, Nano lett. 15, 3557 (2015).
  5. S.L. Zhang, et al, Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect– Direct BandGap Transitions, Angew. Chem. Int. Ed. 54, 3112 (2015).
  6. S. L. Zhang, et al, Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angew. Chem. Int. Ed. 128, 1698 (2016). 
  7. E. Aktürk, O.Ü. Aktürk, S. Ciraci, Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties, Phys. Rev. B. 94, 014115 (2016).
  8. S. Zhang, et al, Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain, Phys. Rev. B. 93, 245303 (2016).
  9. J. Ji, et al, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016).

10. S. Zhang, et al, Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator, Nano Lett. 17, 3434 (2017).

11. A. Lopez-Bezanilla, P.B. Littlewood, σ–π-Band Inversion in a Novel Two-Dimensional Material, J. Phys. Chem. C. 119, 19469 (2015).

12. S. Zhang, et al, Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN2 Sheet, J. Phys. Chem. C. 120, 3993 (2016).

13. F. Li, et al, Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation, Phys. Chem. Chem. Phys. 17, 24151 (2015).

14. M. Naseri, Arsenic carbide monolayer: First principles prediction, Appl. Surf. Sci. 423, 566 (2017).

15. M. Naseri, First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct band gap transition by strain engineering, Chem. Phys. Lett. 685, 310 (2018).

16. P. Blaha, et al, An augmented PlaneWave+ Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013). Wien2K Users Guide, ISBN 3-95010 31-1-2.

  1. 17.  J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

 

18. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13, 5188 (1976).

19. P. Giannozzi, et al, Quantum espresso: a modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21, 395502, (2009).

20. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B. 43, 1993 (1991).

21. B. Delley, From molecules to solids with the DMol3 approach, The Journal of Chemical Physics. 113, 7756 (2000).

22. G.J. Martyna, M.L. Klein,  M.E. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97, 2635 (1992).

23. F. Birch, Equation of state and thermodynamic parameters of NaCl to 300 kbar in the hightemperature domain, J. Geophys. Res. B. 83, 1257 (1978).

24. M. Naseri, Magnesium carbide monolayer: A novel quasi-planar semiconductor, Superlattices Microstruct. 102, 134 (2017).