مشخصه‌یابی آلومینای متخلخل آندی به روش آنالیز با باریکه‌ی یونی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه پیام نور،

2 پژوهشکده‌ی فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای

3 گروه فیزیک، دانشگاه پیام نور

چکیده

 اکسیدآلومینیم متخلخل به دلیل خواص یگانه­‌ی خود، کاربرد گسترده­ای در فن­‌آوری دارد. کیفیت لایه‌­ی متخلخل، ضخامت این لایه، چگالی و اندازه­‌ی خُلل‌ها، نقش تعیین­‌کننده­ای در عملکرد این ماده‌­ی پیشرفته دارند. اندازه‌گیری مستقیم و غیرمخرب ویژگی­‌های لایه‌­ی‌ متخلخل به منظور کنترل فرایند ساخت و بهبود عملکرد آن، از چالش‌های پیش‌روی پژوهش‌گران است. در این پژوهش، سعی شده است تا با استفاده از توانمندی آنالیز به وسیله­‌ی باریکه‌­ی یونی، برخی از مشخصات اکسید آلومینیم متخلخل تعیین شود. به این منظور از روش‌های پس­‌پراکندگی کشسانی (EBS)، آشکارسازی ذرات پس زده از برخورد کشسان (ERD) و برهم‌کنش هسته‌ای (NRA) برای مشخصه‌یابی آلومینای متخلخل و مقایسه­‌ی آن با نمونه­‌ی آلومینای غیرمتخلخل استفاده شده است. با استفاده از روش EBS ترکیب­های عنصری، ناخالصی‌ها و نمایه­ی عمقی عناصر؛ با استفاده از روش NRA غلظت عناصر اکسیژن و کربن در نمونه؛ و با روش ERD نمایه‌­ی عمقی هیدروژن موجود در نمونه‌ها، اندازه‌گیری شده است. علاوه ‌بر این، با استفاده از روش آنالیز پس­‌پراکندگی باریکه‌­ی یونی تشدیدی  16O(α ,α)16O، تحلیل ساختاری تخلخل بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Characterization of Anodic Porous Alumina by Ion Beam Analysis Method

نویسندگان [English]

  • F Mokhles Gerami 1
  • A. R Kakuee 2
  • S Mohammadi 3
چکیده [English]

Porous aluminum oxide due to its unique properties has a wide range of applications in technology.  The quality of porous layer, its thickness as well as the size and density of pores, have crucial rule in the performance of this advanced material. Direct and nondestructive measurement of specifications of the porous layer is among the challenges facing the researchers in controlling its fabrication process and improvement of its performance.  In this research work, we have tried to employ the capabilities of ion beam analysis techniques to determine certain characteristics of the porous aluminum oxide layer. For this purpose, the techniques of elastic backscattering spectroscopy (EBS), elastic recoil detection (ERD) analysis, and nuclear reaction analysis (NRA) have been employed for characterization of porous alumina and its comparison with nonporous alumina. Using the EBS technique, elemental composition, impurities and depth profiles of elements in the sample are measured. By the NRA technique, oxygen and carbon concentrations in the sample are determined; and by using the ERD technique, the depth profile of the existing hydrogen in the sample is measured. Moreover, by employing the resonant ion beam scattering analysis of 16O(α ,α)16O, structural analysis of the porosity is investigated.

کلیدواژه‌ها [English]

  • Porous Aluminum Oxide
  • Ion Beam Analysis
  • Porosity
  • Resonance Reaction
  • Depth Profile

[1] K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials Process technology and applications, Materials echnology Series, 4, Dordrecht; Boston: Kluwer Academic Publishers (1998).

 

[2] A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors, Trends Anal. Chem. 44 (2013) 25-37.

 

[3] R.M. Metzger, V.V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli, W.D. Doyle, Magnetic Nanowires in Hexagonally Pores of Alumina, IEEE Trans. on Magn. 36 (2000) 30-35.

 

[4] Y. Piao, H. Kim, Fabrication of nanostructured materials using porous alumina template and their applications for sensing and electrocatalysis, J. nanosci. and nanotechnol., 9 (2009) 2215-2233.

 

[5] G.Q. Lu, X.S. Zhao, Nanoporous materials- An overview, Nanoporous materials: Science and Engineering, Series on chemical engineering, 4(1-12), London: Imperical College Peress, (2004).

 

[6] B. Bhushan (Ed.), Scanning probe microscopy in nanoscience and nanotechnology 2, Springer Science & Business Media, (2010).

 

[7] S. Brunauer, P.H. Emmett, E. Teller, The use of low temperature Van der Waals adsorption isotherm in determining surface area, J. Am. Chem. Soc. 60 (1938) 309.

 

[8] A.B. Abell, K.L. Willis, D.A. Lange, Mercury intrusion porosimetry and image analysis of cement-based materials, J. Colloid Interface Sci. 211 (1999) 39-44.

 

[9] C.M. Lopatin, T.L. Alford, V.B. Pizziconi, T. Laursen, A new technique for characterization of pore structures in materials-application to the study of hydroxyapatite thin films, Mater. Lett. 37 (1998) 211–214.

 

[10] Z. Zolnaiand, A. Deák, N. Nagy, A.L. Tóth, E. Kótai, G. Battistig, A 3D-RBS study of irradiation-induced deformation and masking properties of ordered colloidal nanoparticulate masks, Nucl. Instr. Meth. B 268 (2010) 79–86.

 

[11] V. Torres-Costaand, F. Pászti, A. Climent-Font, R.J. Martín-Palma, J.M. Martínez-Duart, Prosity profile determination of porous silicon interference filters by RBS, Phys. Stat. Sol. (c) 2 (2005) 3208–3212.

 

[12] V. Torres-Costaand, R.J. Martín-Palma, F. Paszti, A. Climent-Font, J.M. Martínez-Duart, In-depth RBS study of optical layers based on nanostructured silicon, J. Non-Cryst. Solids. 352, (2006) 2521–2525.

 

[13] D.J. O'Connor, Ion scattering from 0.1 keV to 10 MeV: A brief review, Microchim. Acta. 120 (1995) 159-170.

 

[14] A. Loni, A.J. Simons, L.T. Canham, Compositional variations of porous silicon layers prior to and during ion-beam analyses, J. Appl. Phys. 76 (1994) 2825-2832.

 

[15] S. Kumar, J.V. Ramana, C. David, V.S. Raju, Ion beam analysis of porous silicon layers, Nucl. Instr. Meth. B 179 (2001) 113-120.

 

[16] T. Giadduiand, L.G. Earwaker, K.S. Forcey, B.J. Aylett, I.S. Harding, A. Loni, L.T. Canham, A comparative study of two ion beam techniques used in the analysis of porous silicon, Nucl. Instr. Meth. B 155 (1999) 308-314.

 

[17] H. Krzyz_anowska, A.P. Kobzev, J. Z_uk, M. Kulik, Hydrogen and oxygen concentration analysis of porous silicon, J. Non-Cryst., Solids. 354 (2008) 4367–4374.

 

[18] IAEA-TECDOC-1409, Ion beam techniques for the analysis of light elements in thin films, including depth profiling, IAEA, Vienna, (2004).

 

[19] O.R. Kakuee, V. Fathollahi, M. Lamehi Rachti, Ion beam analysis of hydrogen in advanced materials: Recent experience of Van de Graaff lab, Int. J. Hydrogen Energy. 35 (2010) 9510–9515.

 

[20] M. Kokkoris, M. Diakaki, P. Misaelides, X. Aslanoglou, A. Lagoyannis, C. Raepsaet, V. Foteinou, S. Harissopulos, R. Vlastou, C.T. Papadopoulos, Study of the d+11 B system differential cross-sections for NRA purposes, Nucl. Instr. Meth. B 267 (2009) 1740-1743.

 

[21] P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood, Barrier-type anodic films on aluminium in aqueous borate solutions: 1—Film density and stopping power of anodic alumina films for alpha particles, Surf. and Interface Anal. 5 (1983) 247-251.

 

 

 

[22] P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood, Barrier-type anodic films on aluminium in aqueous borate solutions: 2—Film compositions by Rutherford backscattering spectroscopy and nuclear reaction methods, Surf. and Interface Anal. 5 (1983) 252-263.

 

[23] A.C. Gâlcă, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema, Structural and optical characterization of porous anodic aluminum oxide, J. Appl. Phys. 94 (2003) 4296-4305.

 

[24] D.R. Pesiri, R.C. Snow, N. Elliott, C. Maggiore, R.C. Dye, The characterization of asymmetric alumina membranes by Rutherford backscattering spectrometry, J. Membr. Sci. 176 (2000) 209-221.

 

[25] M. Hernandez-Velez, K.R. Pirota, F. Paszti, D. Navas, A. Climent, M. Vazquez, Magnetic nanowire arrays in anodic alumina membranes: Rutherford backscattering characterization, Appl. Phys. A. 80 (2005) 1701.

 

[26] P. Prieto, K.R. Pirota, A. Climent-font, M. Vazquez, J.M. Sanz, Magnetic antidot arrays on alumina nanoporous membranes: Rutherford backscattering and magnetic characterization, Surf. and Interface Anal. 43 (2011) 1417-1422.

 

[27] V.K. Khanna, R.K. Nahar, Effect of moisure on the dielectric properties of porous alumina films, Sens. and Actuators. 5 (1984) 187–198.

 

[28] R.K. Nahar, V.K. Khanna, W.S. Khokle, On the origin of the humidity-sensitive electrical properties of porous aluminium oxide, J. Phys. D 17 (1984) 2097–2095.

 

[29] R.K. Nahar, V.K. Khanna, Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities, J. Phys. D 19 (1986) L141–L145.

 

[30] K.S. Chou, T.K. Lee, F.J. Liu, Sensing mechanism of a porous ceramic as humidity sensor, Sens. and Actuators. B 56 (1999) 106–111.

 

[31] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, E.C. Dickey, Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance, J. Mater., Res. 17 (2002) 1162-1171.

 

 

[32] F. Paszti, G. Battistig, Ion beam characterization and modification of porous silicon, Phys. Stat. Sol. (a) 182 (2000) 271-278.

 

[33] A. Gurbich, Evaluated data from SigmaCalc archive (2013); https://www-nds.iaea.org/exfor/ ibandl.htm (2016/02/20).

 

[34] Z. Hajnal, E. Szilagyi, F. Paszti, G. Battistig, Channeling-like effects due to the macroscopic structure of porous silicon, Nucl. Instr. Meth. B 118 (1996) 617-621.

 

[35] H.H. Andersen, J.F. Ziegler, Hydrogen- Stopping Powers and Ranges in All Elements, vol. 3 of The Stopping and Ranges of Ions in Matter, Pergamon Press, New York, (1977).

 

[36] M. Mayer, SIMNRA user's guide, Report IPP9/113, Germany: Max-Planck-Institutfur PlasmaPhysik, Garching (1997).

[37] E. Szilagyi, F. Paszti, G. Amsel, Theoretical approximations for depth resolution calculations in IBA methods, Nucl. Instr. Meth. B 100 (1995) 103-121.

 

[38] L.R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Instr. Meth. B 9 (1985) 344-351.

 

[39] Z. Hajnal, E. Szilágyi, F. Pászti, G. Battistig, Channeling-like effects due to the macroscopic structure of porous silicon, Nucl. Instr. Meth. B 118 (1996) 617-621.

 

[40] N.P. Barradas, C. Jeynes, R.P. Webb, Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett. 71 (1997) 291-293.