اثر گازهای پیرامونی بر تابش پلاسما و گسترش آن در برهم کنش لیزر با مس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه الکترونیک، مجتمع دانشگاهی برق و الکترونیک، دانشگاه صنعتی مالک اشتر،

2 گروه الکترونیک، مجتمع دانشگاهی برق و الکترونیک، دانشگاه صنعتی مالک اشتر

3 پژوهشگاه علوم و فن آوری اپتیک و لیزر، دانشگاه صنعتی مالک اشتر، شاهین شهر

چکیده

در این پژوهش اثر گازهای پیرامونی هوا، آرگون، هلیم و نئون در فشارهای مختلف بر تابش و گسترش پلاسمای حاصل از برهم­کنش باریکه­‌ی لیزر با هدف فلزی، با تأکید بر بهینه‌­سازی نسبت سیگنال به تابش پیوستار به روش بیناب‌­نمایی فروشکست القایی لیزری و جذب و پراکندگی پرتو کاوش بررسی شده است. نتایج نشان می­‌دهند که تابش‌­ها و گسترش پلاسما به نحو قابل­‌توجهی به نوع و فشار گاز پیرامون وابسته است. بیش­ترین شدت خطوط نشری اتم مس به ترتیب برای گازهای آرگون، نئون، هوا و هلیم به دست آمده است. برای تمام گازها با افزایش فشار گاز پیرامون از 5 تا mbar100، شدت تابش طیفی پلاسما افزایش می­‌یابد و سپس با بیش­تر شدن فشار تا یک اتمسفر اشباع می‌­شود. تابش پیوستار پلاسما نیز با افزایش فشار، روندی افزایشی دارد و به ترتیب برای گازهای آرگون، هوا، نئون و هلیم بیش­ترین مقدار را دارد. نسبت تابش طیفی به پیوستار زمینه به ترتیب برای گازهای هلیم، نئون، هوا و آرگون بیشینه است و برای تمام گازها با افزایش فشار کاهش می‌­یابد. نتایج حاصل از گسترش پلاسما به روش جذب و پراکندگی پرتو کاوش با نظریه سدف- تیلور مقایسه شد. سرعت گسترش پلاسما در نزدیکی سطح هدف در حضور گاز هلیم در فشار mbar750 برابر با m/s25200 و در حضور گازهای نئون، هوا و آرگون به ترتیب 15625، 13900 و m/s 11860 به دست آمد که با دور شدن از سطح به شدت اُفت کرده و در فاصله 6mm از سطح برای گازهای هلیم، نئون، هوا و آرگون به ترتیب به 2550، 1000، 700 و m/s690 می‌­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of Ambient Gases on the Plasma Radiation and its Expansion in Laser-Copper Interaction

نویسندگان [English]

  • M Pishdast 1
  • A Eslami Majd 2
  • M Kavosh Tehrani 3
چکیده [English]

In this paper, the impacts of air, argon, helium and neon ambient gases under different gas pressures on radiations, emphasizing in the signal to radiation background and the expansion of laser induced plasma from laser metal interaction have been experimentally studied using spectroscopy, probe beam absorption, and scattering methods. The results show that the plasma radiations and its expansion behavior depend strongly on the ambient gas presure. The highest intensity of the copper spectral lines occurred in argon, neon, air, and helium, respectively. For all gases, by increasing the gas pressure from 5 to 100 mbar the plasma spectral radiation increases and then it saturates at the higher gas pressure. The continuum radiation also increases with the pressure and has the highest value for Ar, air, Ne and He gases, respectively. Plasma in He, Ne, air and Ar has the best singnal to backgrourd (S/B) ratio, respectively, and decreases with the pressure. The probe beam absorption and scattering results have also been compared with the Sedov-Taylor strong shock wave model. The maximum speed of the plasma plume expansion, occurred near the target surface under 750 mbar gas pressure, and was determined for helium to be about 25200 m/s, and through neon, air and argon gases, amounted to about 15625, 13900 and 11860 m/s, respectively, as they reduced significantly when they were far from the target surface and reached 2550, 1000, 700 and 690 m/s at 6 mm from the target for helium, neon, air and argon, respectively.

کلیدواژه‌ها [English]

  • : Laser produced plasma
  • Ambient gas
  • Probe beam absorption and scattering
  • LIBS

[1] D.B. Chrisey, G.K Hubler, Pulsed laser deposition of thin films, Wiley, New York, (1994).

 [2] M.F. Becher, I.R. Brock, Hong Cai, D.E. Henneke, J.W. Keto, Jaemyoung Lee, W.T. Nichols, H.D. Glicksman, Metal nanoparticles generated by laser ablation, Nano. Strut. Mater. 10 (1998) 853.

 [3] A. Marcinkevicius, S. Juadkazis, M. Watanable, M. Miwa, Femtosecond laser-assisted three-dimensional microfabrication in silica, Opt. Lett. 26 (2001) 277.

 

[4] F.H. Loesel, J.P. Fischer, M.H. Gots, C. Horvath, Non-thermal ablation of neural tissue with femtosecond laser pulses, Appl. Phys. B 66 (1998) 121.

 

[5] L.J. Radziemski, From LASER to LIBS, the path of technology development, Spectrochim. Acta, Part B 57 (2002) 1109.

 

[6] S.S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, V. Sizyuk, The effect of excitation wavelength on dynamics of laser-produced tin plasma, J. Appl. Phys. 109 (2011) 063306.

 

[7] S.S. Harilal, G.V. Miloshevsky, T. Sizyuk, A. Hassanein, Effects of excitation laser wavelength on Ly-α and He-α line emission from nitrogen plasmas, Phys. Plasmas 20 (2013) 013105.

 

[8] Reinhard Noll, Laser-Induced Breakdown Spectroscopy Fundamentals and Applications, Springer (2012).

 

[9] C. Aragon, J.A. Aguilera, Two-Dimensional Spatial Distribution of the Time-Integrated Emission from Laser-Produced Plasmas in Air at Atmospheric Pressure, Appl. Spectrosc. 51 (1997) 1632.

 

[10] S.S. Harilal, C.V. Bindhu, Riju C. Issac, V. P.N. Nampoori, C.P.G. Vallabhan, Electron density and temperature measurements in a laser produced carbon plasma, J. Appl. Phys. 82 (5) (1997).

 

[11] M. Akram, Shazia Bashir, Asma Hayat, Khaliq Mahmood, Riaz Ahmad, M. Khaleeq-U-Rahaman, Effect of laser irradiance on the surface morphology and laser induced plasma parameters of zinc, Laser Part. Beams 32 (2014) 119–128.

 

[12] T. Kim, Y. Yoon, Effect of Irradiation Wavelength on a Laser Induced Plasma, J. Korean Phys. Soc. 35 (3) (1999) 198.

 

[13] J.S. Penczak, Yaoming Liu, Robert J. Gordon, Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta, Part B 66 (2) (2011) 186-188.

 

[14] S.M.R. Darbani, M. Ghezelbash, A. E. Majd, M. Soltanolkotabi, H. Saghafifar, Temperature effect on the optical emission intensity in laser induced breakdown spectroscopy of super alloys, J. Eur. Opt. Soc. Rap. Pub. 9 (2014) 14058.

 

[15] S.H. Tavassoli, A. Gragossian, Effect of sample temperature on laser-induced breakdown spectroscopy, Opt. Laser Tech. 41 (4) (2009) 481.

 

[16]  M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Effect of Laser-Induced Crater Depth in Laser-Induced Breakdown Spectroscopy Emission Features, Appl. Spec. 59 (2005) 7.

 

[17] J. Chen, Z. Chen, J. Sun, X. Li, Z. Deng, Y. Wang, Effects of laser pulse sequence on laser-induced soil plasma emission, Appl. Opt 51 (2012) 34.

 

[18] Andrew J. Effenberger, Jr., Jill R. Scott, Effect of Atmospheric Conditions on LIBS Spectra, Sensors 10 (2010) 4907.

 

[19] Wolfganf Sdorra, Key Neimax, Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes, Mikrochim. Acta 107 (1992) 319.

 

[20] N. Farid, S.S. Harilal, H. Ding, A. Hassanein, Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures, J. Appl. Phys. 115 (2014) 033107.

 

[21]  J.A. Aguilera, C. Arag_on, F. Penalba, Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis, Appl. Surf. Sci. 127 (1998) 309.

 

[22] C.B. Dreyer, G.S. Mungas, P. Thanh, J.G. Radziszewski, Spectrochim. Acta, Part B 62 (2007) 1448.

 

[23] R. Eason, Pulsed Laser Deposition of Thin Films: Application-Led Growth of Functional Materials, Wiley, New York (2007).

 

 

 

[24] Yasou Iida, Effects of atmosphere on laser vaporization and excitation processes of solid samples, Spectrochem. Acta 45 B (12) (1990) 1353.

 

[25] Lee Y. I. Thiem T. L., Kim G. H., Teng Y.Y., Sneddon J. Appl. Spectrosc. 14 (1992) 1597.

 

[26] S.S. Harilal, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, Influence of ambient gas on the temperature and density of laser produced carbon plasma, Appl. Phys. Lett. 72 (2) (1998).

 

[27] J.A. Aguilera, C. Aragon, A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure, Appl. Phys. A 69 [Suppl.] S475 (1999).

 

[28] S.S. Harilal, Beau O’Shay, Yezheng Tao, Mark S. Tillack, Ambient gas effects on the dynamics of laser-produced tin plume expansion, J. Appl. Phys. 99, (2006) 083303.

 

[29] Galila Abdellatif, Studying the Role of Ambient Conditions in Laser-induced Al-Plasma Expansion, J. Korean Phys. Soc. 56 (1) (2010) 300.

 

[30] Shazia Bashir, Nazar Farid, Khaliq Mahmood, M. Shahid Rafique, Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd, Appl. Phys. A  107 (2012) 203.

 

[31] Nazar Farid, Shazia Bashir, Khaliq Mahmood, Effect of ambient gas conditions on laser-induced copper plasma and surface morphology, Phys. Scr. 85 (2012) 015702.

 

[32] A. Nakimana, Haiyan Tao, Xun Gao, Zuoqiang Hao and Jingquan Lin, Effects of ambient conditions on femtosecond laser-induced breakdown spectroscopy of Al, J. Phys. D: Appl. Phys. 46 (2013) 285204.

 

[33] Chan-Kyu Kim, Jung-Hwan In, Seok-Hee Lee and Sungho Jeong, Influence of Ar buffer gas on the LIBS signal of thin CIGS films, J. Anal. At. Spectrom. 28 (2013) 460-467.

 

[34] Sidra Khan, Shazia Bashir, Asma Hayat, M. Khaleeq-ur-Rahman, Faizan–ul-Haq, Laser-induced breakdown spectroscopy of tantalum plasma, Phys. Plasmas 20, (2013) 073104.

 

[35] F. Rezaei, S.H. Tavassoli, Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma, Phys. Plasmas 20, (2013) 013301.

[36] D.B. Geohegan, A.A. Puretzky, Dynamics of laser ablation plume penetration through low pressure background gases, Appl. Phys. Lett. 67 (1995) 197.

 

[37] S. Amoruso, B. Toftmann, J. Schou, Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow, Phys. Rev. E 69 (2004) 056403.

 

[38] H.C. Le, D.E. Zeitoun, J.D. Parisse, M. Sentis, W. Marine, Phys. Rev. E 62 (2000) 4152.

 

[39] S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93 (2003) 2380.

 

[40] A.K. Sharma, R.K. Thareja, Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography, Appl. Phys. Lett. 84 (2004) 4490–4492.

 

[41] J.F. Ready, Effects of High-Power Laser Radiation, Academic, New York (1971).

 

[42] G.V. Ostrovskaya, A.N. Zaidel, Laser spark in gases, Sov. Phys-Usp. 16  (1974) 834.

 

[43] C.G. Morgan: Prog. Phys, 38, 621 (1957).

 

[44] D.C. Emmony, Interaction of IR laser radiation with liquid, Infrared Phys. 25 (1985) 133.

 

[45] S. Ridah, Shock waves in water, J. Appl. Phys. 64 (1988) 152.

 

[46] M.A. Harith, et.al, Dynamics of laser‐driven shock waves in water, J. Appl. Phys. 66 (1989) 5194.

 

[47] N. Bloembergen, Laser-induced electric breakdown in solids, IEEE J. QE 10  (1974) 375.

 

[48] V.P. Zharov, V.S. Letokhov: Laser Optoacoustic Spectroscopy, Springer Ser. Opt. Sci 37 (1986).

 

[49] V. Palleschi, D.P. Singh, M. Vaselli, (eds.): Proc. Int'l Conf. on Phenomena in Ionized Gases, Barga, Italy (1991).

 

[50] S. Mahmood, R.S. Rawat, M. Zakaullah,.J. Lin, S.V. Springham, T.L. Tan, P. Lee, Investigation of plume expansion dynamics and estimation of ablation parameters of laser ablated Fe plasma, J. Phys. D: Appl. Phys. 42  (2009) 135504.

[51] S. Mahmood, R.S. Rawat, S.V. Springham, T.L. Tan, P. Lee, Material ablation and plasma plume expansion study from Fe and graphite targets in Ar gas atmosphere, Appl. Phys. A, 101 (2010) 695.

 

[52] Yu. I. Ostrovsky, M. Butusov, G. Ostrovskaya: Interferometry by Holography, Springer Ser. Opt. Sci., 20 (Springer, Berlin, Heidelberg (1980).

 

[53] M.A. Harith, et.al, Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography, Opt. Commun. 71 (1989) 76-80.

 

[54] P. Gregorcic, J. Mozina, High-speed two-frame shadowgraphy for velocity measurements of laser-induced plasma and shock-wave evolution, Opt. Lett. 36 (15) (2011) 2782.

 

[55] A.H. Farahbod, M. Afshari, E. Aghayari, Plasma expansion in laser-target interaction process, J. Nucl. Sci. Tech. 58 (2012) 1-7.

 

[56] I. Mihaila, C. Ursu, A. Gegiuc, G. Popa, Diagnostics of plasma plume produced by laser ablation using ICCD imaging and transient electrical probe technique, J. Phys.: Conf. Ser. 207 (2010).

 

[57] J.R. Freeman, et.al, Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions, Spectrochim. Acta, Part B 87 (2013) 43.

 

[58] A.M. Azzeer, A. S. Al-DwayyanM. S. Al-SalhiA. M. KamalM. A. Harith, Optical probing of laser-induced shock waves in air, Appl. Phys. B 63 (3) (1996) 307.

 

[59] http://www.nist.gov.

 

[60] S.S. Harilal, G.V. Miloshevsky, et.al, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere, Phys. plasma 19 (2012) 083504.

 

[61] Annemie Bogaerts, Zhaoyang Chen, Davide Bleiner, Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments, J. Anal. At. Spectrom 21 (2006) 384–395.