تأثیر دزهای مختلف اشعه ی گاما بر ویژگی‌های جوانه زنی بذر گیاه دارویی بالنگوی شیرازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات گیاهان دارویی، دانشگاه شاهد،

2 دانشکده‌ی علوم کشاورزی، دانشگاه شاهد

چکیده

گیاه دارویی بالنگو (Lallemantia royleana) دارای مواد مؤثر فراوانی است. بذر بالنگو دارای فواید گوناگونی از جمله ضد نفخ، یبوست، سرفه­‌ی خشک و آسم است. با توجه به اهمیت تنوع ژنتیکی در اصلاح نباتات، از جهش مصنوعی برای ایجاد تنوع می‌­توان استفاده کرد. این پژوهش به منظور بررسی آثار دزهای مختلف اشعه‌ی گاما (°، 50، 100، 150، 250، 350، 450، 550، 700، Gy900) بر ویژگی‌­های بذر بالنگوی شیرازی و تعیین دز مناسب پرتو­ گاما برای ایجاد جهش از طریق طرح کاملاً تصادفی با 4 تکرار اجرا شد. نتایج حاصل از این آزمایش نشان داد که بین دزهای اشعه­‌ی گاما، اختلاف معنی­‌داری از نظر وزن خشک ساقه‌­چه، وزن تر ریشه­‌چه، طول ریشه‌­چه و ساقه­‌چه و نیز پارامترهای جوانه­‌زنی شامل مدت زمان، ضریب، سرعت، واریانس و همگنی آن وجود دارد. درصد جوانه‌­زنی با صفاتی مانند سرعت و واریانس جوانه‌­زنی، وزن تر ساقه­‌چه، وزن خشک ساقه­‌چه و ریشه‌­چه، در سطح احتمال 1% همبستگی مثبت و معنی­‌دار داشت، ولی با طول ساقه‌­چه و طول ریشه­‌چه همبستگی نداشت. هم­چنین دز
250Gy برای ایجاد جهش در بالنگوی شیرازی مناسب تشخیص داده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Different Doses of Gamma Rays on Seed Germination Characteristics of Balango Shirazi (Lallemantia Royleana)

نویسندگان [English]

  • M. H Fotokian 1
  • Z Madani 2
چکیده [English]

Balango (Lallemantia royleana), as a medicinal plant, contains a significant amount of effective ingredients. Balango seed has several properties: it is anti-bloating, constipation, dry cough, and asthma to name only a few. With regard to the importance of genetic diversity in plant breeding, induced mutation has been used for diversification. This study was conducted to evaluate the effect of gamma rays  doses  (0, 50, 100, 150, 250, 350, 450, 550, 700, and 900 Gy)  on traits related to grains of Balango Shirazi, and also to determine the suitable dose of gamma rays for induced mutation through completely randomized design with four replications. On the basis of variance analysis results, the differences among gamma rays doses were statistically significant for traits such as shoot dry weight, root fresh weight, mean germination time, germination rate, germination variances, germination homogeneity, root length and shoot length. The correlation of germination percentage with traits included germination rate, germination variance, root fresh weight, shoot dry weight. The shoot dry weight was positively significant at 1% probability level. Meanwhile, the correlation of germination percentage with shoot length and root length was not significant. As a conclution, gamma dose of 250 Gy was chosen as a suitable dose in mutation breeding experiment of Balango.

کلیدواژه‌ها [English]

  • Balango
  • Gamma Ray
  • Germination Characteristics

[1] F. Ghaderi-Far, A. Soltani, H.R. Sadeghipour, Evaluation of nonlinear regeression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature, J. of Plant Prod, 16(4), (2009) 1-19.

 [2] M. Tavasoli, H. Omidi, S. Rasti, L. Jafarzadeh, Investigation of germination and seed dormancy reaction in medicinal species of balango (Lallemantia spp) to salicylic acid, Proceeding of 2th Iranian congress of crop production and plant breeding, (2012) 389.

 

[3] A.Z. Gannadi, Compositional analysis of essential oil of Lallematia royleana, from Iran, Flavour frag. J. 18 (2003) 237-239.

 

[4] M. Yonesi Hamzehkhanlo, A. Izadidarbandi, N. Pirvali Biranvand, M.T. Hallajian, Study of morphological variation in Soya Mutants lines (7th generation) deived from irradiated with gamma rays in greenhouse condition, J. Nucl. Sci. Tech. 3(9) (2012) 97-105.

 

[5] C. Atak, S. Alikemanoglu, L. Acik, Y. Canbolat, Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD, Mutat. Res. 556 (2004) 35-44.

 

[6] R.D. Brock, Prospects and perspectives in mutation breeding, Basic Life Sci., 8 (1976) 117-32.

 

[7] M. Maluszynski, S.A. Beanet, S. Bojorn, Application of in vitro and in vivo mutation techniques for crop improvement, Euphytica 85 (1995) 303-307.

 

[8] A. Wani, M.A. Anis, Gamma Ray- and EMS-Induced Bold-Seeded High-Yielding mutants in chickpea (Cicer arietinum), Turk. J. Biol. 32 (2008) 1-5.

 

[9] M.H. Fotokian, M. Khosroshahi, M. Moghaddam, M.R. Shakiba, The study on the effect of gamma rays on several Iranian rice, J. Daneshvar 6(22) (1998) 51-58.

 

 

[10] J.L. Molina-Cano, F. Rocade Tgores, C. Royo, A. Perez, Fast-germination low β-glucan mutants induced in barley with improved malting quality and yield, Theor. Appl. Genet. 78 (1989) 748-754.

 

[11] A. Saha, S.C. Santra, S. Chanda, Modulation of some quantitative characteristics in rice (Orayza sativa) by ionizing radiation, Radiat. Phys. Chem. 74 (2005) 391-394.

 

[12] V.R. Jalali, M. Homaei, M. Saber, M. Eskandri, The comparison of rapseed germination in CaCl2+NaCl and natural saline solutions, Proceeding of 9th Iranian congress of crop production and plant breeding, Aborayhan campus, Tehran (2006).

 

[13] A. Soltani, M. Ghalipoor, E. Zeinali, Seed reserve utilization and seedling of wheat as affected by drought and salinity, J. Env. Exp. Bot. 55 (2006) 195-200.

 

[14] P.J. Rodford, Growth analysis, Their use and abuse, Crop Sci., 7 (1967) 171-175.

 

[15] F.S. Murungu, P. Nyamugafata, C. Chiduza, L.J. Clark, W.R. Whalley, Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.), Soil Tillage Res. 74 (2003) 161-168.

 

[16] S. Foti, S.L. Cosentino, C. Patane, G.M. Agosta, Effects of osmoconditioning upon seed germination of sorghum (Sorghum bicolor L. Moench) under low temperatures, Seed Sci. Tech. 30 (2002) 521-533.

 

[17] M.M. Ludlow, R.C. Muchow, A critical evaluation of trits for improving crop yield in water-limited environments, Adv. Agron. 43 (1990) 107-153.

 

[18] K.R. Keim, C.O. Gardner, Genetic variation for cold tolerance in selected and unselected maize populations, Field Crops Res. 8 (1984) 143-151.

 

[19] M.H. Fotokian, The investigation of the effect of gamma rays and Dimethy sulfate (DMS) on several rice varieties, Tabriz University, M.S. Thesis, (1993).

[20] M.H. Fotokian, H. Amiri Ogham, D. Davodi, V. Ramehe, Inducing genetic diversity in SARIGOL and RGS003 rapeseed using gamma rays, Research project, Agricultural Research center, Shahed university, (2010).

 

[21] M.Q. Khan, S. Anwar, M.I. Khan, Genetic variability for seedling traits in wheat (Triticum aestivum L.) under moisture stress conditions, Asian J. Plant Sci. 1 (2002) 588-590.

 

[22] Z.S. Madani, L. Jafarzadeh, Evaluation of Seed Germination Characteristics Balango (Lallemantia royleana) in response to different levels of temperature, Proceedings of 2th International Congress of Iranian medicinal plants, (2013) 891.

 

[23] J. Rastegari, S. Vedadi, M. Ghafari, Causing Mutagenesis Through the Gamma Rays Upon the Saffron Immature Corm Buds, J. Nucl. Sci. Tech. 40 (2007) 41-46.

 

[24] A. Patil, S.P. Taware, V.M. Raut, Induced variation in quantitive traits due to physical (gamma rays), chemical (EMS) and combind mutagen treatments in soybean [Glycin max