ارزیابی عملکرد الکترودیونیزاسیون پیوسته به منظور حذف استرانسیم و سزیم از محلول‌های آبی با استفاده از روش تاگوچی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران،

2 پژوهشکده‌ی چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

3 دانشکده‌ی مهندسی هسته‌ای، دانشگاه شهیدبهشتی

چکیده

در این مطالعه، ابتدا تأثیر زمان بر بازده‌­ی حذف استرانسیم از محلول‌­های آبی به روش الکترودیونیزاسیون پیوسته با رزین پروتونه ­شده بررسی شد. سپس با استفاده از روش طراحی آزمایش تاگوچی، یک آرایه­‌ی متعامد L9 برای بررسی تأثیر ولتاژ، دبی و غلظت خوراک به منظور حذف استرانسیم و سزیم با روش الکترودیونیزاسیون پیوسته با رزین اشباع شده به کار گرفته شد. از روش آنالیز واریانس برای ارزیابی تأثیر نسبی هر فاکتور استفاده شد. عملکرد سیستم الکترودیونیزاسیون با افزایش ولتاژ به کار رفته و کاهش دبی، بهبود یافت. ولتاژ، بیش­ترین تأثیر را بر عملکرد الکترودیونیزاسیون پیوسته داشت و غلظت، تأثیر محسوسی بر حذف استرانسیم و سزیم نداشت. حذف این دو عنصر از محلول­‌های دوجزئی نیز بررسی شد و در این آزمایش نیز بازده‌ی حذف استرانسیم از سزیم بیش­تر بود. نتایج نشان داد که روش الکترودیونیزاسیون یک روش مؤثر برای حذف استرانسیم و سزیم از محلول‌­های آبی است.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Evaluation of Continuous Electrodeionization (CEDI) for Removal of Strontium and Cesium from Aqueous Solutions Using Taguchi Method

نویسندگان [English]

  • A.R Keshtkar 1
  • F Zahakifar 2
  • A. S Shirani 3
  • A Zaheri 2
چکیده [English]

In this study, initialy the effect of time on the removal of strontium from aqueous solutions by continuous electrodeionization (CEDI) with H+ form resin was investigated. Then, by using an orthogonal L9 array in the Taguchi method, the effect of voltage, flow rate and feed concentration on the removal of Sr and Cs from aqueous solutions by the CEDI with the saturated resin was applied. The analysis of variance (ANOVA) method was used to evaluate the relative effect corresponding to each factor. The results showed that by increasing the applied voltage and decreasing the flow rate improve the performance. The effect of input voltage was more significant and the feed concentration did not have any perceptible effect on the Sr and Cs removal efficiency. The removal of both elements from binary solutions were also investigated. In this experiment, the removal efficiency of Sr was also found to be higher than those of Cs. Based on the results, electrodeionization was considered to be effective for Sr and Cs removal from aqueous solutions.

کلیدواژه‌ها [English]

  • Electrodeionization
  • Strontium
  • Cesium
  • Aqueous Solutions
  • Taguchi
  • ANOVA

[1] S. Inan, H. Tel, Y. Altas, Adsorption studies of strontium on hydrous zirconium dioxide, J. radio. Nucl. Chem. 267 (2006) 615–621.

 [2] G. Zakrzewska-Trznadel, M. Harasimowicz, A.G. Chmielewski, Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation, J. Memb. Sci. 163 (1999) 257–264.

 [3] M.C. Negri, R.R. Hinchman, in: Burt D. Ensley (Eds.), The use of Plants for the Treatment of Radionuclides, Ilya Raskin, Wiley. (2000) 107–150.

 [4] M. Ugajin, S. Ajuria (Eds.), Inorganic Ion Exchangers and Adsorbents for Chemical Proc. Nucl. Fuel. Cycl, IAEA-TEC DOC-337, IAEA. (1985) Vienna.

 [5] M.V. Balarama Krishna, S.V. Raoa, J. Arunachalam, M.S. Murali, b, Surendra Kumarc, V.K. Manchandab, Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent, Sep. Pur. Tech. 38 (2004) 149–161.

 [6] H.M. Saleh, Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides, Nucl. Eng. Des. 242 (2012) 425–432.

 [7] D.W. Kang, K.B. Sung, S.H. Lee, H.Y. Kim, Wet oxidation of ion exchange resins in Fenton’s reaction system by using the electrode, J. Kore. Sol. Wast. Eng. Soc. 15 (1998) 24–31.

 [8] F. Liu, G. Zhang, H. Zhang, J. Mo, Performance evaluation of electrodeionization process based on ionic equilibrium with plate and frame modules, Desal. 221 (2008) 425–432.

 [9] J.H. Lee, J.H. Choi, The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Memb. Sci. 409–410 (2012) 251–256.

 [10] J. Lu, Y.X. Wang, Y.Y. Lu, G.L. Wang, L. Kong, J. Zhu, Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water, Electro. Acta. 55 (2010) 7188–7198.

[11] A. Dey, G. Thomas, Electronics Grade Water Preparation, Tall Oaks, Littleton, (2003).

 [12] Ö. Arar, Ü. Yüksel, N. Kabay, M. Yüksel, Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RO) permeate of geothermal water, Desal. 310 (2013) 25–33.

 [13] P. Boontawana, S. Kanchanathaweeb, A. Boontawanb, Extractive fermentation of l-(+)-lactic acid by Pediococcus pentosaceus using electrodeionization (EDI) technique, Bio. Eng. J. 54 (2011) 192–199.

 [14] X. Feng, Z. Wu, X. Chen, Removal of metal ions from electroplating effluent by EDI process and recycle of purified water, Sep. Pur. Tech. 57 (2007) 257–263.

 [15] R. Wen, S. Deng, Y. Zhang, The removal of silicon and boron from ultra-pure water by electrodeionization, Desal. 181 (2005) 153–159.

 [16] E. Dejean, et al., Electrodeionization with ion-exchange textile for the production of high resistivity water: Influence of the nature of the textile, Desal. 114 (1997) 165-173.

 [17] N. Meyer, W.J. Parker, P.J. Van Geel, M. Adiga, Development of an electrodeionization process for removal of nitrate from drinking water Part 1: Single-species testing, Desal. 175 (2005) 153-165.

 [18] K.H. Yeon, J.H. Song, S.H. Moon, A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant, Wat. Res. 38 (2004) 1911-1921.

 

[19] P.B. Spoor, L. Koene, W.R. Ter Veen, L.J.J. Janssen, Continuous deionization of a dilute nickel solution, Chem. Eng. J. 85 (2002) 127-135.

 [20] Y.S. Dzyazko, Purification of a diluted solution containing nickel using electrodeionization, Desal. 198 (2006) 47-55.

 [21] P.B. Spoor, W.R. Ter Veen, L.J.J. Janssen, Electrodeionization 2: The migration of nickel ions absorbed in a flexible ion-exchange resin, J. appl. Elec. 31 (2001) 1071-1077.

 [22] P.B. Spoor, L. Grabovska, L. Koene, L.J.J. Janssen, W.R. Ter Veen, Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system, Chem. Eng. J. 89 (2002) 193-202.

 [23] Y.S. Dzyazko, et al., Electro-deionization of Cr (VI)-containing solution. Part I: chromium transport through granulated inorganic ion-exchanger, Chem. Eng. Comm. 196 (2008) 3-21.

 [24] Y.S. Dzyazko, et al., Electro-deionization of cr (VI)-containing solution. Part II: Chromium transport through inorganic ion-exchanger and composite ceramic membrane, Chem. Eng. Comm. 196 (2008) 22-38.

 [25] Ö. Arara, Ü. Yüksela, N. Kabayb, M. Yüksel, Removal of Cu2+ ions by a micro-flow electrodeionization (EDI) system, Desal. 277 (2011) 296-300.

 [26] H.J. Lee, J.H. Song, S.H. Moon, Comparison of electrodialysis reversal (EDR) and electrodeionization reversal (EDIR) for water softening, Desal. 314 (2013) 43-49.

 [27] H.J. Lee, M.K. Hong, S.H. Moon, A feasibility study on water softening by electrodeionization with the periodic polarity change, Desal. 284 (2012) 221-227

 [28] A. Morel, et al., Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate, Bio. Tech. 118 (2012) 43-48.

 [29] K. Dermentzis, Continuous electrodeionization through electrostatic shielding, Elect. Acta. 53 (2008) 2953-2962.

 [30] R.K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, New York, (2001).