مطالعه‌ی آثار دز تابش‌دهی باریکه‌ی الکترونی انرژی بالا بر خواص فیزیکی و حرارتی هیدروژل‌ها بر پایه‌ی پلی وینیل الکل‌

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی- پلیمر، پردیس فنی و مهندسی، دانشگاه یزد،

2 دانشکده‌ی مهندسی نساجی و پلیمر، دانشگاه آزاد اسلامی، واحد یزد

3 مجتمع پژوهشی ایران مرکزی، پژوهشگاه علوم و فنون هسته‌ای

چکیده

پلی­وینیل الکل (PVA) با خواص زیستی مناسب و قیمت نسبتاً ارزان، توجه ویژه­ای را در ساخت هیدروژل­‌ها، به ویژه با کاربرد پانسمان زخم، به خود اختصاص داده است. از طرفی تاب‌ش­دهی، روشی مطلوب برای تهیه‌­ی هیدروژل­‌ها بر پایه­‌ی PVA به شمار می‌­آید. در این روش، شرایط تابش­‌دهی، به ویژه دز تابش‌­دهی، بر خواص فیزیکی و در نتیجه کارایی هیدروژل بسیار مؤثر است. هدف از انجام این پژوهش، بررسی اثر دز تابش­‌دهی الکترونی بر خواص فیزیکی و حرارتی (بلورینگی) هیدروژل‌­های PVA بود. هیدروژل­‌ها با تابش‌­دهی محلول آبی PVA (wt 7%)، تحت دزهای مختلف تهیه شدند. میزان ژل، درجه­‌ی تورم تعادلی و رفتار دهیدراسیون هیدروژل­‌ها ارزیابی شدند. تغییرات شیمیایی ساختار PVA ناشی از تابش­‌دهی با آزمون FTIR، و رفتار حرارتی ژل­‌های خشک PVA  با آزمون DSC بررسی شدند. با افزایش دز تابش‌­دهی، میزان ژل هیدروژل افزایش اندکی نشان داد، در حالی که میزان تورم آن با کاهش چشم‌گیری همراه بود. دز تابش‌­دهی اثر قابل­‌توجه‌ی بر دهیدراسیون هیدروژل نداشت. نتایج آزمون FTIR نشان دادند که علاوه بر شبکه­‌ای شدن، تخریب زنجیره­‌های PVA نیز با افزایش دز تابش‌­دهی شدت می­‌گیرد. براساس نتایج آزمون DSC، افزایش دز تابش‌­دهی موجب کاهش دماهای بلورینگی و ذوب PVA، و البته افزایش میزان بلورینگی آن شد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of High Energy Electron Beam Irradiation Dose Effects on Physical and Thermal Properties of PVA-Based Hydrogels

نویسندگان [English]

  • M Entezam 1
  • H Daneshian 2
  • M. R Parsaian 3
  • V Ahmadian 3
چکیده [English]

Polyvinyl alcohol (PVA) with the desired bio-properties and relatively low cost has attracted special interest to make hydrogels, especially with the wound dressing application. On the one hand, irradiation is an appropriate method to prepare hydrogels based on PVA. In this method, the irradiation conditions, especially the irradiation dose, influence significantly the physical properties and therefore affect the performance of the hydrogel. The main objective of this research was to investigate the effect of electron beam irradiation dose on the physical and thermal (crystallinity) properties of PVA hydrogels. The hydrogels were prepared by irradiation of the aqueous solution of PVA (7 wt.%) at different doses. The gel content, equilibrium swelling degree and dehydration behavior of the hydrogels were evaluated. The chemical structure changes of the PVA due to irradiation and thermal behavior of the dried PVA gels were probed respectively by FTIR and DCS experiments. In the wake of increasing the dose, the gel content of the hydrogel increased marginally, while its swelling decreased significantly. There was no obvious effect on the hydrogel dehydration by changing in the dose. The FTIR results showed that besides the crosslinking, the PVA chains degradation was also augmented with the dose. According to the DSC results, increasing the dose caused reduction of the crystallization and melt temperatures of the PVA and increment of its crystallinity.

کلیدواژه‌ها [English]

  • High Energy Electron Beam Irradiation
  • Polyvinyl Alcohol
  • Hydrogel
  • Physical Properties
  • Crystallinity

[1] D. Zhang, W. Zhou, B. Wei, X. Wang, R. Tang, J. Nie, J. Wang, Carboxyl-modified poly (vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing, Carbohydr. Polym. 125 (2015) 189-199.

 

[2] S. Sayyar, E. Murray, B.C. Thompson, J. Chung, D.L. Officer, S. Gambhir, G.M. Spinks, G.G. Wallace, Processable conducting graphene/chitosan hydrogels for tissue engineering, J. Mater. Chem. B. 3 (2015) 481-490.

 

[3] W. Feng, L. Zhenqing, K. Mahmood, T. Kenichi, K. Periannan, K. Periannan, R.W. William, K.S. Chandan, G. Jianjun, Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers, Acta. Biomater. 6 (2010) 1978–1991.

 

[4] A. Boushehri, D. Tang, K.J. Shieh, J. Prausnitz, C.J. Radke, Water transport through soft contact lenses determined in a fan-evaporation cell, J. Membr. Sci. 362 (2010) 529–534.

 

[5] R. Barbucci, D. Pasqui, R. Favaloro, G. Panariello, A thixotropic hydrogel from chemically cross-linked guar gum: synthesis, characterization and rheological behavior, Carbohydr. Res. 343 (2008) 3058–3065.

 

[6] C. Xiao, M. Yang, Controlled preparation of physical cross-linked starch-g-PVA hydrogel, Carbohydr. Polym. 64 (2006) 37-40.

 

[7] B. Singh, L. Pal, Radiation crosslinking polymerization of sterculia polysaccharide PVA–PVP for making hydrogel wound dressings, Int. J. Biolog. Macromol. 48 (2011) 501-510.

 

[8] J.M. Rosiak, P. Ulanski, Synthesis of hydrogels by irradiation of polymers in aqueous solution, Radiat. Phys. Chem. 55 (1999) 139-151.

 

[9] A.B. Lugao, S.M. Malmonge, Use of radiation in the production of hydrogels, Nucl. Instrum. Meth. Phys. Res. B. 185 (2001) 37-42.

 

[10] S. Tripathi, G.K. Mehrotra, P.K. Dutta, Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications, Int. J. Biolog. Macromol. 45 (2009) 372–376.

 

[11] E.S. Costa-Júnior, E.F. Barbosa-Stancioli, A.A.P. Mansur, W.L. Vasconcelos, H.S. Mansur, Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications, Carbohydr. Polym. 76 (2009) 472–481.

 

[12] E. Kenawy, E.A. Kamoun, M.S. Mohy Eldin, M.A. El-Meligy, Physically crosslinked poly (vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications, Arab. J. Chem. 7 (2014) 372–380.

 

[13] J. Dutta, Synthesis and Characterization of γ-irradiated PVA/PEG/CaCl2 Hydrogel for Wound Dressing, J. Am. Chem. 2 (2012) 6-11.

 

[14] M. Kita, Y. Ogura, Y. Honda, S.H. Hyon, W.I. Cha, Y. Ikada, Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material, Grafe’s Arch. Clin. Exp. Opthalmol. 228 (1990) 533-537.

 

[15] F. Yoshii, K. Makuuchi, D. Darwis, T. Iriawan, M. Razzak, J.M. Rosiak, Heat resistance poly (vinyl alcohol) hydrogel, Radiat. Phys. Chem. 46 (1995) 169-174.

 

[16] A.V. Mondino, M.E. Gonzalez, G.R. Romero, E.E. Smolko, Physical properties of gamma irradiated poly (vinyl alcohol) hydrogel preparations, Radiat. Phys. Chem. 55 (1999) 723-726.

 

[17] L. Varshney, Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing, Nucl. Instrum. Meth. Phys. Res. B. 255 (2007) 343-349.

 

[18] J.G. Lyons, L.M. Geever, M.J.D. Nugent, J.E. Kennedy, C.L. Higginbotham, Development and characterisation of an agar–polyvinyl alcohol blend hydrogel, J. Mech. Behave. Biomed. Med. Mate. 2 (2009) 485-493.

 

[19] X. Yang, Z. Zhu, Q. Liu, X. Chen, M. Ma, Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by g-irradiation followed by freeze-thawing, Radiat. Phys. Chem. 77 (2008) 954- 960.

[20] J.S. Park, H.A. Kim, J.B. Choi, H.J. Gwona, Y.M. Shin, Y.M. Lim, M.S. Khil, Y.C. Nho, Effects of annealing and the addition of PEG on the PVA based hydrogel by gamma ray, Radiat. Phys. Chem. 81 (2012) 857–860.

 

[21] S.J. Zhang, H.Q. Yu, Radiation-induced degradation of polyvinyl alcohol in aqueous solutions, Water Res. 38 (2004) 309-316.

 

[22] N. Hilmy, D. Darwis, L. Hardiningsih, Poly (n- vinyl pyrolidone) hydrogels 2. Hydrogel composites as wound dressing for tropical environment, Radiat. Phys. Chem. 42 (1993) 911-914.

 

[23] Z. Ajji, I. Othman, J.M. Rosiak, Production of hydrogel wound dressings using gamma radiation, Nucl. Instrum. Meth. Phys. Res. B. 229 (2005) 375–380.

 

[24] R. Yoshida, Y. Okuyama, K. Sakai, T. Okanoa, Y. Sakurai, Sigmoidal swelling profiles for temperature-responsive poly (IV-isopropylacrylamide- co-butyl methacrylate) hydrogels, J. Membr. Sci. 89 (1994) 267-277.

 

[25] N.A. Peppas, D. Tennenhouse, Semicrystalline poly (vinyl alcohol) films and their blends with poly (acrylic acid) and poly (ethylene glycol) for drug delivery applications, J. Drug Del. Sci. Tech. 14 (2004) 291-297.

 

[26] A.B. Lugao, L.D.B. Machado, L.F. Mirandal, M.R. Alvarez, J.M. Rosiak, Study of wound dressing structure and hydration/dehydration properties, Radiat. Phys. Chem. 52 (1998) 319-322.

 

[27] J.F. Kenney, G.W. Willcockson, Structure–Property relationships of poly (vinyl alcohol). III. Relationships between stereo-regularity, crystallinity, and water resistance in poly (vinyl alcohol), J. Polym. Sci. A-1 4 (1966) 679-698.

 

[28] N.V. Bhat, M.M. Nate, M.B. Kurup, V.A. Bambole, S. Sabharwal, Effect of γ-radiation