شبیه‌سازی یک دزیمتر جدید بر پایه‌ی ویژگی‌های الکتریکی کامپوزیت پلی‌متیل متاکریلایت- نانولوله‌ی کربن

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده‌ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی

چکیده

نانولوله­‌های کربن از طریق آمیختن با پلیمرها در کسر وزنی خاصی موسوم به آستانه­‌ی گذر الکتریکی، منجر به افزایش ناگهانی و چندمرتبه‌ای رسانندگی الکتریکی کامپوزیت پلیمر- نانولوله­‌ی کربن می­‌شوند. در پژوهش حاضر، با توجه به این ویژگی، ایده­‌ی استفاده از کامپوزیت پلی­متیل متاکریلات- نانو لوله­‌ی کربن به شکل یک دزیمتر فعال مطرح شد. از جمله عوامل مؤثر در پاسخ این نوع دزیمتر، تغییر مقاومت الکتریکی کامپوزیت در اثر جذب پرتو است. به منظور بررسی پارامترهای دزیمتری مربوط به کامپوزیت فوق در آهنگ­‌های دز مختلف، از نرم‌افزار COMSOL و روش اِلمان محدود بهره‌گیری شد. در این شبیه‌سازی چگالی جریان الکتریکی کامپوزیت PMMA-CNT با ضخامت mμ 10 تحت ولتاژ ثابت V3 در
آهنگ‌­های دز مختلف در مدت min 2 برای نمونه‌هایی با درصدهای وزنی متفاوت نانولوله کربن، نزدیک به ناحیه­‌ی آستانه‌­ی گذر الکتریکی یعنی 0.17، 0.19 و 0.03 به دست آمد. مقدار دز جذبی از حاصل‌­ضرب آهنگ دز در مدت زمان تابش‌­دهی محاسبه شد. خطی بودن پاسخ دز از mGy 400 تا حدود Gy 3 در گستره‌­ی دز تشخیصی و درمانی را می‌توان عاملی مثبت به منظور استفاده از ماده­‌ی کامپوزیتی فوق با کاربردهای دزیمتری تلقی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of a Novel Dosimeter Based on Electrical Characteristics of Polymethyl Methacrylate- Carbon Nanotube Composite

نویسندگان [English]

  • F Ziaie
  • Sh Malekie
  • M M. Larijani
چکیده [English]

Combination of carbon nanotubes with polymers in an especial weight percentage called electrical percolation threshold, leads to a sudden increase of several orders of magnitude of the electrical conductivity of the polymer-carbon nanotube composite. In the present research, considering these characteristics, the idea of using Polymethyl Methacrylate-Carbon Nanotube composite as an active dosimeter is exhibited. One of the factors affecting the response of this type of dosimeter is the variation of electrical resistance in the composite due to absorption of radiation. For investigation of dosimetric parameters of this composite in different dose rates, the COMSOL software and finite element method were utilized. In this simulation, the electrical current density of PMMA-CNT composite with a thickness of 10µm under a constant voltage of 3 V in different dose rates for 2 min was calculated for the samples having different weight percentages of carbon nanotubes adjacent to the electrical percolation threshold region, namely 0.17, 0.19 and 0.30. The value of the absorbed dose was calculated through the product of the dose rate by the irradiation time. Linearity of the dose response in the range of 400 mGy to ~3 Gy in the diagnostic and therapeutic dose levels could be considered as a positive factor for dosimetry applications of this composite material.

کلیدواژه‌ها [English]

  • Simulation
  • Active Dosimeter
  • Composite
  • Carbon Nanotube
  • Polymethyl Methacrylate

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

 

[2] T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano letters 4 (2004) 35-39.

 

[3] Z. Yao, C. Kane, C. Dekker, High-Field Electrical Transport in Single-Wall Carbon Nanotubes, Phys. Rev. Lett. 84 (2000) 2941-2944.

 

[4] P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite, Science 265 (1994) 1212-1214.

 

[5] O. Korostynska, K. Arshak, D. Morris, A. Arshak, E. Jafer, Radiation-induced changes in the electrical properties of carbon filled PVDF thick films, Mater. Sci. Eng. B 141 (2007) 115-120.

 

[6] J. Ma, J. Yeow, Effect of percolation on electrical conductivity in a carbon nanotube-based film radiation sensor, Proc. IEEE conf. on Nanotechnology (2008) 259-262.

 

[7] E.V. Barrera, R. Wilkins, M. Shofner, M.X. Pulikkathara, R. Vaidyanathan, Functionalized Carbon Nanotube-Polymer Composites and Interaction with Radiation, in: H. William Marsh Rice University, TX (Ed.), US (2010).

 

[8] S. Malekie, F. Ziaie, Effective permittivity simulation of Polyethylene-Carbon Nanotube Nano-Composite using Finite Element Method, Annual Physics Conference of Iran, University of Sistan and Baluchestan, Zahedan (2014) 407-410.

 

[9] P. Owen, Modelling a Calorimeter for High Dose Rate Brachytherapy, Department of Physics, University of Surrey (2011) 76.

 

[10] COMSOL Multiphysics Modeling and Simulation Software, http://www.comsol.com/ products/ heat-transfer (2015).

 

[11] S. Malekie, F. Ziaie, A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites,  J. Polym. Eng. 37(2) (2016) 205-210.

[12] I. Balberg, C.H. Anderson, S. Alexander, N. Wagner, Excluded volume and its relation to the onset of percolation, Phys. Rev. B, 30 (1984) 3933-3943.

 

[13] A. Belashi, A Dissertation entitled Percolation Modeling in Polymer Nanocomposites (2011).

 

[14] K. Jeon, L. Lumata, T. Tokumoto, E. Steven, J. Brooks, R.G. Alamo, Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes-high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM, Polymer 48 (2007) 4751-4764.

 

[15] S. Malekie, F. Ziaie, Study on a novel dosimeter based on polyethylene–carbon nanotube composite, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791 (2015) 1-5.

 

[16] W.D. Callister, Fundamentals of Materials Science and Engineering, fifth ed., John Wiley & Sons, Inc., The University of Utah (2001).

 

[17] S. Luo, Processing-Structure-Property Relationships Of Carbon Nanotube And Nanoplatelet Enabled Piezoresistive Sensors, The Florida State University, Electronic Theses, Treatises and Dissertations (2013) Paper 7478.

 

[18] I. Tavman, Y. Aydogdu, M. Kök, A. Turgut, A.E. a, Measurement of heat capacity and thermal conductivity of HDPE/expanded graphite nanocomposites by differential scanning calorimetry, Archives of Materials Science and Engineering 50 (2011) 5.

 

[19] N. Apsley, H.P. Hughes, Temperature- and field-dependence of hopping conduction in disordered systems, Philos. Mag. 3 (1974) 963.

 

[20] V. Skákalová, U. Dettlaff-Weglikowska, S. Roth, Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA, Synthetic Met. 152 (2005) 349-352.

 

 

 

[21] J.M. Benoit, B. Corraze, S. Lefrant, W.J. Blau, P. Bernier, O. Chauvet, Transport properties of PMMA-Carbon Nanotubes composites, Synthetic Met. 121 (2001) 1215-1216.

 

[22] F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys. Rev. B, 72 (2005) 121404.

 

[23] F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey, Nanotube Networks in Polymer Nanocomposites:  Rheology and Electrical Conductivity, Macromolecules 37 (2004) 9048-9055.

 

[24] J. Dai, Q. Wang, W. Li, Z. Wei, G. Xu, Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites, Mater. Lett. 61 (2007) 27-29.

 

[25] O. Regev, P.N.B. ElKati, J. Loos, C.E. Koning, Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology,