بررسی جذب سزیم و اثر متقابل آن با پتاسیم در دو گیاه ذرت و سیب‌زمینی

نویسندگان

1 گروه خاکشناسی، دانشکده‌ی علوم کشاورزی، دانشگاه شاهد

2 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی

3 پژوهشکده‌ی کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی

چکیده

یکی از محصولات ناشی از شکافت هسته‌­ای، 137Cs است و به دلیل گسیل پرتو گامای پرانرژی همراه با فروپاشی و نیمه­‌عمر طولانی، یکی از مهم­ترین هسته‌­های پرتوزای محیطی به شمار م‌ی­رود که می‌­تواند با ورود به چرخه­‌ی غذایی، سلامت انسان را در معرض خطر جدی قرار دهد. پتاسیم نیز یکی از عناصر ضروری برای رشد و نمو گیاهان است که دارای شعاع هیدراته­‌ی مشابه با سزیم است و در نتیجه این دو عنصر ممکن است در خاک و گیاه رفتار مشابه‌ی داشته باشند. در این پژوهش به منظور بررسی رابطه­‌ی بین پتاسیم و سزیم در خاک و گیاه، و بررسی توانمندی جذب سزیم در گیاهان، آزمایش گلدانی در قالب طرح فاکتوریل بر پایه­‌ی بلوک کامل تصادفی با دو گیاه سیب­­‌زمینی اکبری (Solanum Tuberosum) و ذرت دندان اسبی (Zea mays L. var. indentata) در سه سطح 133Cs (°، 17 و mg/kg 34 در خاک از منبع نیترات سزیم)، سه سطح پتاسیم (°، 22.5 و mg/kg 45 در خاک از منبع سولفات پتاسیم)، حاوی kg 6 خاک در هر گلدان با سه تکرار صورت گرفت. نتایج نشان داد که اثر نوع گیاه و تیمارهای سزیم و پتاسیم بر محتوای سزیم گیاه، معنی­‌دار هستند (0.01>P). میانگین غلظت سزیم جذب شده در ذرت و سیب­زمینی به ترتیب 55.29  و mg/kg 9.15 ماده­­ی خشک بود. با افزایش مقدار سزیم به 17 و mg/kg 34 خاک، غلظت سزیم گیاه به ترتیب 227% و537%  نسبت به تیمار شاهد افزایش یافت. اثر متقابل تیمارهای سزیم و پتاسیم در محتوای سزیم گیاه  معنی­‌دار شد (0.01>P). براساس نتایج این پژوهش مشخص شد که افزایش مقدار پتاسیم مازاد بر نیاز گیاه در تیمارهای 22.5 وmg/kg 45 پتاسیم در خاک، باعث کاهش جذب سزیم در گیاه به ترتیب به میزان 53% و 37% نسبت به تیمار صفر پتاسیم شد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Caesium Uptake and its Interaction Effect with Potassium in Corn and Potato

نویسندگان [English]

  • H Torabi Golsefidi 1
  • M Ghavamifar 1
  • A Bahrami Samani 2
  • E Moghiseh 3
چکیده [English]

: 137Cs is one of the products of nuclear fission. Due to its energetic gamma-ray emission along with the decay and long half-life, it is one of the most important environmental radionuclides. Transfer of radionuclides from air, soil and freshwater to the foodchain of the mankind will endanger the human health. Potassium, as an essential macronutrient for plants due to the similarity of its hydrated radius to that of the caesium, has the similar behavior in soil and plant. So, in this study, the relationship between caesium and potassium in soil and plant and the ability of caesium uptake was investigated. A pot experiment in a factorial design, based on randomized complete block, was performed with two plant species; Dent corn (Zea mays L. var. indentata), Akbari potato (Solanum Tuberosum), 3 levels of 133Cs (0, 17 and 34 mgkg-1 of soil from caesium nitrate) and 3 levels of potassium (0, 22.5 and 45 mgkg-1 ofsoil from potassium sulfate), containing 6kg soil per pot with three repeats. The results showed that the effects of the plant species, caesium and potassium treatments are significant (P<0.01). The average amount of caesium in corn and potato were, respectively, 29.55 and 9.15 mgkg-1 dry matter. By increasing the amount of caesium to 17 and 34 mgkg-1 of soil, increased the plant's absorption of caesium by 227% and 537%, respectively, compared with the controlled one. The interaction effect of caesium and potassium treatments in the amount of caesium of the plant was significant (P<0.01). The results showed that the increase of the potassium in excess of the plantsʼ need in 22.5 and 45 mgkg-1 of soil,the treatment of potassium has reduced the caesium uptake by 53% and 37%, respectively, compared with the controlled one.

کلیدواژه‌ها [English]

  • 133Cs
  • Potassium
  • Caesium Nitrate
  • Environmental Radionuclides

[1] M.A. Aslani, S. Aytas, S. Akyil, G. Yaprak, G. Yener, M. Eral, Activity concentration of caesium-137 in agricultural soils, J. Environ. Radioact. 65 (2003) 131-145.

 

[2] J. Peterson, M. MacDonell, L. Haroun, F. Monette, R.D. Hildebrand, A. Taboas, Radiological and chemical fact sheets to support health risk analyses for contaminated areas, Human Health Fact Sheet, Argonne, (2007) 38-39.

 

[3] B.C. Bostick, M.A. Vairavamurthy, K. Karthikeyan, J. Chorover, Caesium adsorption on clay minerals: An EXAFS spectroscopic investigation, Environ. Sci. Tech. 36 (2002) 2670-2676.

 

[4] M.R. Noll, Geochemical dynamic of caesium sorption by selected clay minerals, Delaware Univ., Newark, DE (United States), Ph.D. Thesis. (1989).

 

[5] G. Sposito, The chemistry of soils, Oxford University Press (2008).

 

[6] M.A. Wasserman, E.R.R. Rochedo, A.C. Ferreira, C.C. Conti, A.G. Viana, F. Bartoly,
J.C. Wasserman, D.V. Perez, Plant uptake processes related with the geochemical behavior of radionuclides in some Brazilian soil, In IAEA, Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants. Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003, (2006).

 

[7] J.P. Absalom, S.D. Young, N.M.J. Crout, A.F. Nisbet, R.F.M. Woodman, E. Smolders, A.G. Gillett, Predicting soil to plant transfer of radiocaesium using soil characteristics, Environ. Sci. Tech. 33 (1999) 1218-1223.

 

[8] Y.G. Zhu, E. Smolders, Plant uptake of radiocesium: a review of mechanisms, regulation and application, J. Exp. Bot. 51 (2000) 1635-1645.

[9] IAEA, Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants. Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003, (2006).

 

[10] J. Li, H. Peng, B. Ma, G. Li, R. Guo, F. Ma, A field study of soil-to-plant transfer of strontium-90 and caesium-137 based on a Calcaric Cambisol in sub-tropical southwest China, In IAEA, Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants. Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003 (2006).

 

[11] M. Rahman, G. Voigt, Radiocaesium soil-to-plant transfer in tropical environments, J. Environ. Radioact. 71 (2004) 127-138.

 

[12] T. Ban-nai, Y. Muramatsu, Transfer factors of radioactive Cs, Sr, Mn, Co and Zn from Japanese soils to root and leaf of radish, J. Environ. Radioact. 63 (2002) 251-264.

 

[13] P. Schuller, K. Bunzl, G. Voigt, A. Krarup, A. Castillo, Soil to crops transfer of radiocaesium and -strontium in different allophanic soils from the Lake Region, Chile, In IAEA, Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants. Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003 (2006).

 

[14] P.K. Gupta, (Ed), Soil, plant, Water and Fertilizer Analysis, New Delhi, India (2000).

 

[15] Vice Presidency for Planning and Supervision, Guidelines for laboratory analysis of soil and water sample, No. 467. Office of Deputy for Strategic Supervision, Bureau of Technical Execution, Ministry of Agriculture-Jahad, Water and Soil Research Institute (2009) (in Persian).

[16] J.A. Kittric, E.W. Hope, A procedure for particle size separation of soils for x-ray diffraction, Soil Sci. Soc. Am. Pro. 35 (1971) 621-626.

 

[17] M.R. Broadley, N.J. Willey, Differences in root uptake of radiocaesium by 30 plant taxa, Environ. Pollut. 97 (1997) 11.

 

[18] J. Absalom, S. Young, N. Crout, Radiocaesium fixation dynamics: measurement in six Cumbrian soils, Eur. J. Soil Sci. 46 (1995) 461-469.

 

 

 

 

 

 

 

 

 

 

 

 

[19] A. Bouzidi, F. Souahi, S. Hanini, Sorption behavior of caesium on Ain Oussera soil under different physicochemical conditions, J. Hazad. Mate. 184 (2010) 640-646.

 

[20] C. Liu, J.M. Zachara, S.C. Smith, J.P. McKinley C.C. Ainsworth, Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim. et Cosmochimica Acta. 67 (2003) 2893-2912.

 

[21] M. Seilsepour, M.R. Momayezi, Determination of critical levels of phosphorus and potassium in underground winter wheat soils in Varamin plain. Ir. J. of Dynamic Agriculture. 3 (2006) 1-13 (in Persian).