مطالعه‌ی تجربی اثر هندسه‌ی آند و جنس- طول عایق دستگاه پلاسمای کانونی نوع مَدر بر شدت باریکه‌ی یون نیتروژن

نوع مقاله: مقاله پژوهشی

نویسنده

دانشکده‌ی مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله، اثر هندسه‌ی الکترود آند با طول و جنس‌های مختلف پوشش عایق بر شدت باریکه‌ی یون نیتروژن در یک دستگاه پلاسمای کانونی kJ3 مطالعه شده است. از دو جنس عایق پیرکس و کوارتز با طول‌های مختلف و دو هندسه‌ی استوانه‌ای و مخروطی آند استفاده شد. شدت یون‌ها در ولتاژ kV 12 و آند مخروطی با عایق به طول mm 50 از جنس پیرکس نسبت به عایق کوارتز، ضریب افزایشی 1.11 را نشان می‌دهد. طول بهینه‌ی متناظر با بیش‌­ترین شدت باریکه‌ی یون در عایق پیرکس، با تغییر هندسه‌ی آند تغییر می­‌کند و در این ولتاژ از مقدار بهینه‌ی mm 45 در آند استوانه‌ای به طول mm 50 در آند مخروطی افزایش یافته است. در شرایط کاری یکسان، آند مخروطی نسبت به آند استوانه‌ای شدت یون بیش‌­تری را به دست می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study of the Anode Geometry and Insulator Material-Length Effect on Ion Beam Intensity in a Mather Type Plasma Focus Device

نویسنده [English]

  • M Habibi
چکیده [English]

In this paper, the effect of the anode electrode geometry with different insulator sleeve lengths and materials on the ion beam emitted from a 3 kJ plasma focus device is studied. Two Pyrex and Quartz insulators with different lengths and two anode tip geometries, i.e. cylindrical and conic, are used. Ion beam intensity in 12 kV charging voltage and conic anode with the 50 mm Pyrex insulator was increased by a factor of 1.11. Optimum length of the Pyrex insulator related to the maximum ion beam intensity varied with the anode geometry and increased from 45 mm to 50 mm, when we replaced the cylindrical anode with the conic one in 12 kV applied voltage. Under the same working condition, the conic anode tip tended to have more ion beam intensity in comparison with the conventional cylindrical flat geometry.

کلیدواژه‌ها [English]

  • Plasma Focus
  • Ion Beam
  • Insulator Sleeve
  • Quartz
  • Pyrex
  • Ion Intensity
  • Conic Anode
 

[1] F. Malik, H. Schmidt, S.M. Hassan, R.S. RawatT. Zhang, S. Mahmood, and J.J. Lin, Effect of Anode Shapes on Neutron Emission from a Repetitive Plasma Focus Device, IEEE 34th ICOPS 26 (2007) 13-19.

 

[2] N. Talukdar, S. Borthakur, N. K. Neog, and T. K. Borthakur, Comparative study of neutron emission from a plasma focus device using two different anode shapes, Phys. Plasmas 23 (2016) 5-12.

 

[3] T. Zhang, X. Lin, K. A. Chandra, Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device, Plasma Sources Sci. Technol. 14 (2005) 368-379.

 

[4] A. Shyam and R. K. Rout, Effect of anode and insulator materials on plasma focus sheath (pinch) current , IEEE Trans. Plasma Sci. 25 (1997) 1166-1178.

 

[5] M. Zakaullah, I. Ahmed, N. Rashid, Study of neutron emission in a low-energy plasma focus with β-source-assisted breakdown, Plasma Phys. Controlled Fusion 35 (1993) 689-694.

 

[6] M. Zakaullah, T. J. Baig, S. Beg, and G. Murtaza, Effect of insulator sleeve length on neutron emission in a plasma focus, Phys. Lett. A 39 (1989) 1374-1385.

 

[7] N. Talukdar, N.K. Neog, T.K. Borthkur, Effect of anode shape on pinch structure and X-ray emission of plasma focus device, Results Phys. 3 (2013) 142–151.

 

[8] M.A. Mohammadi, S Sobhanian, R. S. Rawat, The effect of anode shape on neon soft X-ray emissions and current sheath configuration in plasma focus device, Phys. D: Appl. Phys. 42 (2009) 5203-5213.

 

[9] J. W. Mather, Formation of a High‐Density Deuterium Plasma Focus, Phys. Fluids 8 (1965) 336-349.

 

[10] S. Lee and S. H. Saw, Plasma focus ion beam fluence and flux—Scaling with stored energy, Phys. Plasmas 19 (2012) 703-715.

 

[11] W. Mather, Methods of Experimental Physics, Academic Press 9 (1971) 154-183.

 

[12] M. G. Haines, Dense Plasma in Z-pinches and the Plasma Focus, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1456 (1981) 649-663.

 

[13] H. Kelly and A. Marquez, Ion-beam and neutron production in a low-energy plasma focus, Plasma Phys. Control. Fusion 38 (1996) 1931–1942.

 

[14] M. Sadowski, J. Zebrowski, E. Rydygier, and J. Kucinski, Ion emission from plasma-focus facilities, Plasma Phys. Control. Fusion 6 (1988) 763-769.

 

[15] M. Zakaullah, I. Ahmad, A. Omar, G. Murtaza and M. M. Beg, Effects of anode shape on plasma focus operation with argon, Plasma Sources Scie. T. 3 (1996) 122-138.

 

[16] M. Habibi, R. Amrollahi, M. Attaran and R. Etaati, Design, construction and the first experiments on the Amirkabir Plasma Focus (APF) facility, Plasma Devices Oper. 3 (2008) 98-109.

 

[17] Angular Distribution Analysis of Nitrogen Ions in a Low Energy Dense Plasma Focus Device, M. Sohrabi, et al, Contrib. Plasma Phys. 53 (2013) 54-63. 

 

[18] S. Lee, T. Y. Tou, S. H. Saw, P. Lee, A simple facility for the teaching of plasma dynamics and plasma nuclear fusion, Am. J. Phys. 56 (1988) 26-38.

 

[19] S. Lee, and P. H. Sakanaka, Technology of a small plasma focus incorporating some experiences with the UNU/ICTP PFF Small Plasma Physics Experiments, World Sci. 113 (1990) 88-122.