جذب توریم (IV) از محلول‌های آبی با استفاده از زیست‌جاذب زوج عامل‌دار شده با جلبک و مخمر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

2 دانشکده‌ی مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

با تثبیت جلبک سیستوسریاایندیکا و مخمرنان ساکارومایسز سرویسیا در سیلیکاژل، یک زیست­‌جاذب دوعاملی برای جذب یون­‌های توریم­(IV) از محلول­‌های آبی فراهم شد. توانایی و ظرفیت جذب این زیست‌­جاذب دوعاملی برای جذب توریم­(IV) از محلول­‌های آبی در روش ناپیوسته ارزیابی شد. با استفاده از روش سطح پاسخ بر پایه‌­ی طرح مرکب مرکزی، تأثیر متغیرهای فرایندی pH (2 تا 6)، زمان (10تا min 180)، غلظت اولیه­‌ی محلول توریم­(IV) (50 تاmg/l  300) و مقدار جاذب (0.5 تا g/l 5) بر جذب زیستی توریم­(IV) از
محیط­‌های آبی بررسی، و فرایند جذب بهینه‌­سازی شد. تحلیل واریانس نشان داد که مقادیر جاذب، غلظت اولیه­‌ی محلول توریم­(IV)، زمان و pH به ترتیب، مؤثرترین عوامل در جذب زیستی توریم(IV) هستند. تحت شرایط بهینه­ (pH برابر با 5، زمان­ تماس min 137.5، غلظت اولیه­‌ی g/l 237.5 محلول توریم­(IV) و مقدار
جاذب g/l1.63) میزان ­جذب mg/g 128.82 براورد شد. داده­‌های سینتیکی با معادله‌­ی سینتیکی درجه­‌ی دوم به خوبی برازش شدند. داده‌­های جذب نیز با هم­دمای لانگمویر در مقایسه با هم‌­دمای فروندلیچ و تمکین بهتر توصیف شدند. ظرفیت بیشینه­‌ی زیست­‌جاذب برای جذب توریم(IV) با هم‌­دمای لانگمویر برابر mg/g 142.86 براورد شد. مقادیر
محاسبه‌­شده­‌ی پارامترهای ترمودینامیکی نشان داد که فرایند جذب توریم(IV) در شرایط کاری به کار گرفته شده، خودبه­‌خودی و گرماگیر بوده است و سازوکار فیزیکی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Adsorption of Th‌(IV) From Aqueous Solutions Using Bi-Functionalized Algae-Yeast Biosorbent

نویسندگان [English]

  • s A. Milani 1
  • Mohamad Karimi 2
  • B Maraghe Mianji 1
چکیده [English]

Immobilized Cystoseira indica algae and Saccharomyces Cerevisiae on the silica gel were used for the biosorption of Th­(IV) from aqueous solutions. Ability and capacity of bi-functionalized algae-­yeast biosorbent for adsorption of thorium­(IV) from aqueous solutions were investigated in a batch method. The response surface methodology (RSM) based on the central composite design (CCD) was used to investigate the effect of pH (2-6), time (10-180 min), initial thorium(IV) concentration (50-300 mg/l) and adsorbent dosage (0.5-5 g/l) on the sorption of thorium­(IV) from aqueous solutions, and to optimize the biosorption of Th­(IV). Variance analysis showed that the adsorbent dosage, initial Th(IV) concentration, time and pH were respectively, the most effective factors in the biosorption of thorium(IV). Under optimal conditions (pH 5, contact time 137.5 min, initial Th(IV) concentration 237.5 mg/l, and adsorbent dosage 1.63 g/l­) the capacity of the biosorbent for Th(IV) was estimated to be 128.82 mg/g. The kinetic data were fitted well the pseudo-second-order rate equation. The biosorption data could be well described by Langmuir isotherm in comparison to Freundlich and Temkin isotherms. The maximum sorption capacity of the biosorbent for Th­(IV), by Langmuir isotherm was estimated to be 142.86 mg/g. The thermodynamic parameters indicated that the biosorption of Th(IV) on the biomass was a spontaneous, and endothermic process, at the studied temperatures and would occur via physical adsorption.

کلیدواژه‌ها [English]

  • Thorium Adsorption
  • Bi-Functionalized Adsorbent
  • Cystoseira Indica
  • Saccharo-Myces Cerevisiae
  • Response Surface Methodology

[1] T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368 (2010) 13-22.

 

[ 2]       S. S. Ahluwalia, Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technol. 08 (2007) 2243-2257.

 

[ 3]       A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations, J. Colloid Interf. Sci.  296 (2006) 434-441.

 

[ 4]       D. Park, Y.-S. Yun, J. Park, The past, present, and future trends of biosorption. Biotechnol. Bioproce. 15(1) (2010) 86-102.

 

[ 5]       S. Ahluwalia, S. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technol. 08 (2007) 2243-2257.

 

[ 6]       S.K. Kazy, S.K. Das, P. Sar, Lanthanum biosorption by a pseudomonas species: equilibrium studies and chemical characterization, J. Ind. Microbiol. 33  (2006) 773–783.

 

[ 7]       ZR. Holan, B. Volesky, Biosorption of heavy metals. Biotechnol. Prog. 11 (1995) 235–250.

 

[8] J.L. Gardea-Torresdey, MK. Becker-Hapak, LM. Hosea, DW. Darnall, Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol. 24 (1990) 1372–1378.

 

[9] B. Volesky, Biosorption of heavy metals. CRC Press,  Boca Raton (1991).

 

[10]      S. Schiewer, B. Volesky, Biosorption processes for heavy metal removal. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM Press, Washington, DC (2000).

 

 

[11] R.H. Crist, JM. Martin, D. Carr, JR.Watson, HJ. Clarke,  Interactions of metals Ni2+, Cd2+, Ca2+, Mg2+, Cu2+, Pb2+, Zn2+) and protons with algae. 4. Ion exchange vs. adsorption models and a reassessment of Scatchard plots; ion exchange rates and equilibrium compared with calcium alginate. Environ. Sci. Technol. 28 (1994)1859–1866.

 

[12]      S. Schiewer, B. Volesky, Modeling of the proton metal ion exchange in biosorption. Environ. Sci. Technol. 29 (1995) 3049–3058.

 

[13]      S. Schiewer, B. Volesky, Modeling multi-metal ion exchange in biosorption. Environ. Sci. Technol. 30 (1996) 2921–2927.

 

[14]      J. Wang, C. Chen, Biosorbent for heavy metals removal and their future. Biotechnol. Adv. 27 (2009) 195–226.

 

[15]      A. Sarı, M. Tuzen, Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160 (2008) 349–355.

 

[16]      ME. Mahmoud, AA. Yakout, MM. Osman, Dowex anion exchanger-loaded-baker’s yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species. J. Hazard. Mater. 164 (2009) 1036–1044.

 

[17]      J. Wang, C. Chen C, Biosorption of heavy metals by Saccharomycescerevisiae: a review. Biotechnol. Adv. 24 (2006) 427–451.

 

[18]      N. Rangsayatorn, P. Pokethitiyook, ES. Upatham, GR. Lanza GR,  Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30 (2004) 57–63.

 

[19]      S. Marseaut, A. Debourg, P. Dostalek, J. Votruba, G. Kuncova, J. M. Tobin, A silica matrix biosorbent of cadmium, International Biodeterioration & Biodegradation 54 (2004.) 209–214.

 

[20]      W. Ngeontae, W. Aeungmaitrepirom, T. Tuntulani, Chemically modified silica gel with amino-thioamido-anthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). Talanta, 71 (2007) 1075–1082.

 

[21]      D. Chaiko, JP. Kopasz, AJG. Ellison, Use of sol–gel systems for solid liquid separation. Ind. Eng. Chem. Res. 37 (1998) 1071–1078.

 

[22]      AR. Cestari, C. Airoldi,  Chemisorption on Thiol–Silicas: Divalent Cations as a Function of pH and Primary Amines on Thiol–Mercury Adsorbed. J. Colloid. Interface. Sci. 195 (1997)  338–347.

 

[23]      T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari, ST. Akar,  Enhanced biosorption of nickel(II) ions by silica-gelimmobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J. Hazard. Mater. 163 (2009) 1134–1141.

 

[24]      H. Bag˘, M. Lale, AR. Tu¨rker, Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta 47  (1998) 689–696.

 

[25]      D. Humelnicu, G. Drochioiu, K. Popa, Bioaccumulation of thorium and uranyl ions on Saccharomyces cerevisiae. J. Radioanal. Nucl. Chem. 260 (2004) 291–293.

 

[26]      A. R. Keshtkar, M.A. Hassani, biosorption of thorium from aqueous solutions by Ca-pretreated brown algae Cystoseria indica, Korean J. Chem. Eng. 31(2) (2014) 289-295.

 

[27]      X. Liao, L. Li, B. Shi, Adsorption recovery of thorium(IV) by Myrica rubra tanin and larch tannin immobilized onto collagen fibres. J. Radioanal. Nucl. Chem. 260 (2004) 619–625.

 

[28]      MAA. Aslani, M. Eral, S. Akyil, Separation of thorium from aqueous solution using silk fibroin. J. Radioanal. Nucl. Chem. 238 (1998) 123–127.

 

[29]      Y. Andres, HJ. MacCordick, JC. Hubert, Bacterial biosorption and retention of thorium and uranyl cations by Mycobacterium smegmatis. J. Radioanal. Nucl. Chem. 166  (1992) 431–440.

 

[30]      E.A. Bursali, M. Merdivan, M. Yurdakoc, Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J. Radioanal. Nucl. Chem. 283 (2010) 471–476.

 

[31]      K. Inoue, H. Kawakita, K. Ohto, T. Oshima, H. Murakami, Adsorptive removal of uranium and thorium with a crosslinked persimmon peel gel. J. Radioanal. Nucl. Chem. 267 (2006) 435–442.

[32]      MG. Salinas-Pedroza, MT. Olgun, Thorium removal from aqueous solutions of Mexican erionite and X zeolite. J. Radioanal. Nucl. Chem. 260 (2004) 115–118.

 

[33]      R. Donat, S. Aytas, Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.-Na bentonite composite adsorbent. J. Radioanal. Nucl. Chem. 265 (2005) 107–114.

 

[34]      R. Donat, GK. Cilgi, S. Aytas, H. Cetisli, Thermodynamic parameters and sorption of U(VI) on ACSD. J. Radioanal. Nucl. Chem. 279 (2009) 271–280.

 

[35]      R. Donat, K. Esen, H. Cetisli, S. Aytas, Adsorption of uranium(VI) onto Ulva sp.-sepiolite composite. J. Radioanal. Nucl. Chem. 279 (2009) 253–261.

 

[36]      C. Gok, D.A. Turkozu, S. Aytas, Removal of Th­(IV) ions from aqueous solutions using bi-functionalized algae-yeast biosorbent. J. Radioanal. Nucl. Chem. 287(2) (2011) 533-541.

 

[37]      AC. Atkinson, AN. Donev, Optimum experimental design. Oxford University Press 5 (1992) 132-189.

 

[38]      RH. Myers, DC. Montgomery, Response surface methodology: process and product optimization using designed experiments. 2nd Ed. Wiley Pub Inc, New York (2002) 51-83.

 

[39]      K. Ravikumar, S. Krishnan, S. Ramalingam, KB, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent. Dyes Pigments 72 (2007) 66-74.

 

[40]      Atlas of Eh-pH diagrams intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report No. 419 (May 2005).

 

[41]      M. Wazne, X. Meng, G. P. Korfiatis, C. Christodoulatos, Carbonate effects on hexavalent uranium removal from water by nano-crystalline titanium dioxide, J. Hazard. Mater. 136 (1) (2005) 47-52.

 

[42]      S. Saxena, M. Prasad, S. F. D'Souza, Radionuclide sorption onto low-cost mineral adsorbent, Industrial and Engineering Chemistry Research 45 (2006) 9122–9128.

 

[43]      H. Jamali Armand,  Z. Shamohamady Heydari, Effect of initial concentration on the adsorption yield and equilibrium of lead (II) from aqueous solution on rice husk, J. of Environmental Science and Technology 12 (1) (1389) 19-29.

 

[44]      M. Mohammadi Galehzan, S. Shamohammadi, Comparison of active carbon, sawdust, almond Shell and hazelnut shell adsorbent in removal of Nickel from aqueous environment, J. of Water & Wastewater 24(3) (1392)  71-79.

 

[45]      X.P. Liao, B. Shi, Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber, Int. J. Environ. Sci. Tech. 39 (2005) 4628–4632.

 

[46]      H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1) (2011)  458-465.

 

[47]      S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics study of  lead adsorption on to activated carbons from coconut and seed hull of the plam tree, Int. J. Environ. Sci. Tech. 4 (2007) 11-17.

 

[48]      A. Jalil, Aishah, Triwahyono, Sugeng, Adam, S. Hazirah,Rahim, N. Diana, A. Aziz, M. Arif, H. Hairom, N. Hanis,M. Razali, N. Aini, A. Z. Abidin, Mahani, A. Mohamadiah, M. Khairu,  Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J. Hazard. Mater. 181(1) (2010) 755-762.

 

[49]      M. MohammadiA. J. HassaniA. R. Mohamed, G. D. Najafpour, Removal of rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies. J. Chem. Eng. Data 55(12) (2010) 5777-5785.

 

[50]      M.C. Palmieri, B. Volesky, O. Garcia, Biosorption of lanthanium using Sargassum Fluitans in batch system, Hydrometallury 67 (2002) 31-36.

 

[51]      I. Ghodbane, O. Hamdaoui, Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies, J. Hazard. Mater. 160 (2008) 301–309.