مقایسه‌ی غیرفعال‌سازی ویروس سندرم لکه سفید میگو به روش پرتوتابی الکترون و تیمار با فرمالین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

2 موسسه‌ی تحقیقات علوم شیلاتی ایران

چکیده

ویروس سندرم لکه سفید یکی از عوامل بیماری‌­زای مهم در صنعت پرورش میگو است. این ویروس نه تنها در میگو بلکه در سایر
سخت­‌پوستان وجود دارد. نمونه­‌های میگوی عفونی از جنوب ایران جمع‌­آوری، و از نظر وجود ویروس سندرم لکه سفید با استفاده از آزمون
Nested PCR بررسی شدند. ویروس از میگوهای عفونی شده به روش سانتریفوژ و فیلتراسیون جداسازی، و در بدن خرچنگ دراز تکثیر داده شد. این ویروس از همولنف خرچنگ عفونی به روش شیب غلظت سوکروز و اولتراسانتریفوژ خالص‌­سازی، و از راه مشاهده با میکروسکوپ الکترونی تأیید شد. تیتراسیون ویروس (دز کشنده­‌ی 50%) در پست لاروهای یک گرمی میگو ببری سبز در دوره­ی 8 تا 10 روزه انجام شد. غیرفعال­‌سازی ویروس به روش پرتوتابی با استفاده از شتاب­دهنده‌­ی الکترون با انرژی MeV10 و تیمار با فرمالین انجام شد. دز کشنده­‌ی 50% ویروس زنده و ویروس‌­های پرتوتابی شده به روش کربر محاسبه، منحنی دز/ پایندگی با استفاده از نرم­‌افزار Origin6 ترسیم، و ارزش D10 محاسبه شد. تیتر ویروس 105/4 دز کشنده­ی 50% در هر میلی­لیتر،و دز بهینه‌­ی الکترون برای غیرفعال­‌سازی این ویروس kGy 13 به دست آمد. این آنتی­ژن ویروسی پرتوتابی شده می‌­تواند در آینده برای ارزیابی سیستم ایمنی میگو استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of White Spot Syndrome Virus Inactivation by Electron Irradiation and Formalin Treatment

نویسندگان [English]

  • F motamedi-Sadeh 1
  • M Afsharnasab 2
  • M Heidareih 2
چکیده [English]

White spot syndrome virus is a major pathogen in cultured penaeid shrimp industries. The virus not only is present in shrimp but also occurs in marine crustaceans. The infected shrimp samples were collected from south of Iran and the infection was confirmed by Nested PCR.WSSV was isolated from the infected samples by centrifugation and filtration and multiplied in crayfish by intramuscular inoculation. WSSV was purified from the infected crayfish haemolymph by sucrose gradient and ultracentrifuge, and then confirmed under electron Microscopy. In vivo virus titration was made in Penaeus semiculcatus in a period of 8-10 days,and calculated as LD50. WSSV was inactivated by the 10-MeV electron accelerator and formalin treatment. The LD50 of the live virus and the irradiated virus samples were calculated by the Karber method. The dose survival curve for the irradiated and non-irradiated virus samples was drawn by Origin 6.1 software and D10 Value factor was calculated according to the curve. In vivo titration of the live virus stock obtained was 10 5.4 LD50/ ml and the optimum dose of the electron beam for inactivation of WSSV was obtained as 13 kGy. The inactivated, irradiated WSSV antigen can be used for the evaluation of shrimp immune response in the near future.

کلیدواژه‌ها [English]

  • White Spot Syndrome Virus
  • Electron Irradiation
  • Inactivation
  • Formalin
  • Vaccine
[1] MC.W. Van Hulten, J. Witteveldt, S. Peters, N. Kloosterboer, R. Tarchini, M. Fiers, H. Sandbrink, R. Klein Lankhorst, J.M. Vlak. The White Spot Syndrome Virus DNA Genome Sequence, Virol. 286 (2001) 7-22.

 

[2] S. Durand, D.V. Lightner, R.M. Redman, J.R. Bonami, Ultrastructure and morphogenesis of white spot syndrome baculovirus (WSSV), Dis. Aquat. Org. 29 (1997) 205-211.

 

[3] E.C. Nadala, L.M. Tapay, P.C. Loh. Characterization of a non-occluded baculovirus- like agent pathogenic penaeid shrimp, Dis. Aquat. Org. 33 (1998) 221-229.

 

[4] F. Yang, W. Wang, R.Z. Chen, X. Xu, A simple and efficient method for purification of prawn baculovirus DNA, J. Virol. Methods. 67 (1997) 1-4.

 

[5] D.A. Kimbrell, B. Beutler, The evolution and genetics of innate immunity, Nat. Rev. Gen. 2 (2001) 256-267.

 

[6] J. Kurtz, K. Franz, Evidence for memory in invertebrate immunity, Nat. 425 (2003) 37–38.

 

[7] A.O. Alabi,D.A. Jones, J.W. Latchford, The efficacy of immersion as opposed to oral vaccination of Penaeus indicuslarvae against Vibrio harveyi, Aquacu. 178 (1999) 1–11.

 

[8] H.H. Shih, Neutralization of White Spot Syndrome Virus by monoclonal antibodies against viral envelope protein, Taiwa. 49(3) (2004) 159-165.

 

[9] T.W. Flegel, Major Viral Diseases of the black tiger prawn (Penaeus monodon) in Thailand, World. J. Microb. Biotec. 13 (1997) 433-442.

 

[10] A. Namikoshi, J.L. Wu, T. Yamashita, T. Nishizawa, T, Nishioka, M. Arimoto, K. Muroga, Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus, Aquacu. 229 (2004) 25-35.

[11] M. Afsharnasab, A. Dashtyannasab, V. Yeganeh, M. Soltani, Incidence of white spot disease (WSD) in Penaeus indicus farms in Bushehr Province, Iran, Fishe. Scie. 7(1) (2007) 15-26.

 

[12] MC.W. Van Hulten, J. Witteveldt, M. Snippe, J.M. Valk, White Spot Syndrom Virus Envelope protein VP28 is involved in the systemic infection of shrimp, Voril. 285 (2001) 228-233.

 

[13] H. Du, Z. Xu, X. Wu, W. Li, W. Dai, Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus, Aquacu. 260 (2006) 39-43.

 

[14] J. Witteveldt, C.C. Cifuentes, J.M. Valk, MC. W. Van Hulten, Protection of Penaeus monodon against White Spot Syndrom Virus by Oral vaccination, J. Virol. 78(4) (2004) 2057-2061.

 

[15] J. Witteveldt, J.M. Valk, MC.W. Van Hulten, Protection of Penaeus monodon against White Spot Syndrom Virus using a WSSV subunit vaccine, Fish. Shelfi. Immunol. 16 (2004) 571-579.

 

[16] B.T. Poulos, C.R. Pantoja, D. Bradley- Dunlop, J. Aguilar, D.V. Lightner, Development and application of monoclonal antibodies for the detection of White spot syndrome virus of  Penaeid shrimp, Dis. Aquat. Org. 47 (2001) 13-23.

 

[17] MC.W. Van Hulten, M.F. Tsai, C.A. Schipper, C.F. Lo, G.H. Kou, J.M. Valk, Analysis of a genomic segment of white spot syndrome virus of shrimp containing ribonucleotide reductase genes and repeat regions, J. Gen.  Virol. 81 (2000) 307-316.

 

[18] Y.T. Wang, W. Liu, J.N. Seah, C.S. Lam, J.H. Xiang, V. Korzh, J. Kwang, White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis, Dis. Aquat. Org. 52 (2002) 249-259.

 

 

[19] J. Witteveldt, C.C. Cifuentes, J.M. Valk, MC.W. Van Hulten, Protection of Penaeus monodon against White Spot Syndrom Virus by Oral vaccination, J. Virol. 78(4) (2004) 2057-2061.

 

[20] Karber. FMD, Karber formula for calculation of virus/ antibody titres. OIE A Manual, Overview (2002).

 

[21] H.R. Morton Reitman, J.R. Tribble, L. Green, Gamma-Irradiated Venezuelan Equine Encephalitis Vaccines, Appli. Microb. May (1970) 763-767.

 

[22] E. Pollard, The action of ionizing radiation on viruses, Advan. Virus. Res. 2 (1955) 109-151.

 

[23] W. Ginoza, Inactivation viruses by ionizing radiation and heat. In Methods in virology, vol. IV, Chap. 4: 139-209, Academic Press, N.Y. (1968).

 

[24] E.E. Smolko, J.H. Lombardo, Virus inactivation studies using ion beams, electron and gamma irradiation. Nuclear Instruments and Methods in Physics Research, B 236 (2005) 249- 253.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[25] J.H. Lombardo, E.E. Smolko, A Biotechnological project with a gamma radiation source of 100,000 Ci, Radiat. Phys. Chem. 35(4-6) (1990) 585-589.

 

[26] F. Motamedi Sedeh, A. Khorasani, K. Shafaee, H. Fatolahi, K. Arbabi, Preparation of FMD type A87/IRN inactivated vaccine by gamma irradiation and the immune response on guinea pig. India. J.  Microb. 48(3) (2008) 326-330.

 

[27] T. Preuss, S. Kamstrup, N.C. Kyvsgaard, P. Nansen, A. Miler, J.C. Lei, Comparison of two different methods for inactivation of viruses in serum, Clin. Diagno. Labo. Immuno. 4(5) (1997) 504-508.