بهینه‌سازی پارامترهای الکتروشیمیایی در سنتز ابررسانای سرامیکی پایه- بیسموت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

2 دانشکده‌ی مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر

چکیده

در این پژوهش، ماده ابررسانای سرامیکی پایه- بیسموت (BSCCO) به روش رسوب الکتروشیمیایی تهیه، و خواص آن مطالعه شده ­است. الکترولیت مورد استفاده بر پایه­‌ی ترکیبات نیترات بیسموت [Bi(NO3)3]، نیترات مس [Cu(NO3)2]، نیترات کلسیم [Ca(NO3)2] و نیترات استرانسیم [Sr(NO3)2] در حلال دی‌­متیل­­‌سولفواکسید [DMSO, (CH3)2SO]
  است.  [CH3)2SO , DMSO] از آند مسی (Cu) و کاتد نقره­ای (Ag) برای تهیه‌­ی رسوب الکتروشیمیایی استفاده­ شده ­است. در شرایط اختلاف پتانسیل 5V و دمای 0C   55، بهینه پتانسیل و دما برای تولید رسوب ماده‌­ی ابررسانا مشاهده شد. طیف پراش پرتو- ایکس (XRD)، وجود فاز 2212-BSCCO را در نمونه تأیید کرد. این نمونه، یک ساختار
نانو- برگ­شکل با دمای گذار (Tc) 85 K  را نشان می‌­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Electrodeposition Parameters for Preparation of Bismuth-Based Superconductor

نویسندگان [English]

  • H Adelkhani 1
  • M Ahmadi 2
  • H Araghi 2
چکیده [English]

In this paper, BSCCO bismuth-based superconductor material is prepared by the electrodeposition method. The electrolyte compositions are based on bismuth nitrate [Bi(NO3)3] copper nitrate [Cu (NO3)2], calcium nitrate [Ca(NO3)2], strontium nitrate [Sr(NO3)2] and DMSO [(CH3)2SO] as the solvents. The properties of BSCCO are studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). In the electrodeposition method, copper (Cu) and silver (Ag) are used as the anode and cathode, respectively. The optimal efficiency for electrodeposition of a superconductor material is observed at voltage: 5V and temperature: 55˚C. BSCCO-2212 phase in the electrodeposited sample is confirmed by XRD. The sample shows nano-leaf morphology, with a transition temperature (Tc) is 85 K.

کلیدواژه‌ها [English]

  • Bismuth-Based Superconductor
  • Electrodeposition
  • Crystal Structure
  • Morphology
  • Transition Temperature
[1] R. Hott, R. Kleiner, T. Wolf, G. Zwicknagl, Superconducting materials – a topical overview, A. Narlikar (Ed.), Frontiers in Superconducting Materials, Springer Verlag, Berlin (2004).

 

[2] N. Alinejad, N. Pishbin, D. Sohrabi, B. SeyedJalali, L. Shoushtari, B. Mirzaei, H. Adelkhani, Design and fabrication of superconducting spirals used in nuclear fusion systems, NSTRI, PRD-F3-92-001 (2014).

 

 

[4] N. Darsono, D.H. Yoon, K. Raju, Effects of the sintering conditions on the structural phase evolution and TC of Bi1.6Pb0.4Sr2Ca2Cu3O7 prepared using the citrate sol–gel method, J. Supercond. Nov. Magn. 29 (2016) 1491–1497.

 

[5] A. Roth, M. Riabkina-Fishman, J. Zahavi, A. Rosen, Deposition of superconductive thin films by laser PVD, J. Mater. Sci. 26 (1991) 2967-2970.

 

[6] T. Kimura, H. Nakao, H. Yamawaki, M. Ihara, M. Ozeki, Bi-Sr-Ca-Cu-O film on sapphire grown by plasma-enhanced halide CVD, IEEE Transactions on Magnetics27 (2002) 1211-124.

 

[7] R.L.C. Manahan, R.V. Sarmago, Growth of superconducting Bi2Sr2CaCu2O8 films by sedimentation deposition and liquid phase sintering and annealing technique, Physica C 445-448 (2006) 733-736.

 

[8] J. Chen, R.N. Bhattacharya, Z. Ren, Processing of electroplated Bi/Ag tapes using a melt-quench and annealing method, J. Physics D: Applied Physics37 (2004) 1685-1689.

 

[9] C. Li, S. Zhang, Z. Yu, X. Ma, J. Liu, P. Zhang, Room-temperature chemical synthesis of PbO-type Fe Sesuperconducting nanoparticles, J. Supercond. Nov. Magn. 28 (2015) 1449–1453.

 

[10] R.S. Kalubarme, S.H. Pawar, Engineering of superconducting Ba1−xKxBiO3 thin films: novel electrochemical route, J. Supercond. Nov. Magn. 25 (2012) 823–828.

 

[11] M. Singh, S. Chaudhary, S.C. Kashyap, D.K. Pandya, Synthesis and investigation of electrodeposited half-metallic Fe3O4 thin films and nanowires, J. Supercond. Nov. Magn. 24 (2011) 845–849.

[12] P.M. Shirage, D.D. Shivagan, S.H. Pawar, Electrical properties of Ag/Tl–Ba–Ca–CuO/Cd Seheterostructures, J. Supercond. Nov. Magn. 22 (2009) 455–464.

 

[13] P.Y. Chen, S.F. Hu, R.S. Liu, C.Y. Huang, Electrodeposition of nano-dimensioned FeSe, Thin Solid Films 519 (2011) 8397-8400.

 

[14] N.V. Desai, L.A. Ekal, D.D. Shivagan, S.H. Pawar, Electrochemical processing of high-Tc Bi(Pb)–Sr–Ca–CuO thin films, Bull. Mater. Sci. 23 (2000) 51-54.

 

[15] J. Chen, R.N. Bhattacharya, Growth of 1–2 m thick biaxially textured Bi-2212 filmson (100) LaAlO3 single crystal substrates by electrodeposition, Physica C 399 (2003) 171–177.

 

[16] L.A. Angurel, M. Bona, J.M. Andres, D. Munoz-Rojas, N, Casan-Pastor, High quality silver contacts on ceramic superconductors obtained by electrodeposition from non-aqueous solvents, Supercond. Sci. Technol. 18 (2005) 135–141.

 

[17] Y.S. Fung, W.B. Zhang, Electrochemical deposition of superconductor alloyprecursor in a low melting molten salt medium, J. Appl. Electrochem. 27 (1997) 857-861.

 

[18] P.M. Shirage, D.D. Shivagan, R.S. Kalubarme, V. Ganesan, S.H. Pawar, The nucleation and growth mechanism of the electrodeposition of Tl2Ba2Ca2Cu3O10 superconducting thin films on Al-substrate, Supercond. Sci. Technol. 21 (2008) 1-7.

 

[19] L.Y. Su, C.R.M. Grovenor, M.J. Goringe, Fabrication of TBCCO films via sequential electrodeposition and co-electrodeposition of thallium-free precursors, Supercand. Sci. Techn. 7 (1994) 133-140.

 

[20] Y. Mei, S. Green, C. Jiang, H. Luo, Phase formation in a Bi‐Sr‐Ca‐Cu oxide superconductor, J. Appl. Phys. 64 (1988) 6795-6798.

 

[21] R.H. Patel, A. Nabialek, M. Niewczas, Characterization of superconducting properties