شبیه‌سازی جنبش نیرومند زمین و ارائه‌ی روابط کاهندگی برای ساختگاه نیروگاه اتمی بوشهر براساس روش تصادفی گسل محدود

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

2 پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله تهران

چکیده

براساس مقررات IAEA و USNRC، محاسبه‌­ی جنبش نیرومند زمین در هنگام زلزله، برای طراحی سازه‌های حاوی مواد پرتوزا، به ویژه نیروگاه‌های اتمی از اهمیت زیادی برخوردار است. در صورت عدم به‌­کارگیری مطالعات دقیق لرزه‌خیزی و وقوع زلزله‌های شدید، آلاینده‌های بسیاری از انواع مواد پرتوزا در محیط رها می‌شوند و ضررهای جانی و مالی جبران­‌ناپذیری به تأسیسات هسته­ای، مردم و محیط زیست وارد خواهد شد. در این پژوهش به منظور ارائه­ی روابط کاهندگی معتبر برای منطقه­ی مهم بوشهر، از شبیه‌سازی جنبش نیرومند زمین به روش تصادفی (احتمالی) گسل محدود استفاده شده است. نتایج به دست آمده از شبیه‌سازی و نیز رابطه‌­ی کاهندگی حاصل، با نتایج استخراج شده از روابط معتبر جهانی و روابط ارائه شده برای منطقه‌­ی زاگرس مقایسه شده­اند و هم­‌خوانی خوبی را نشان می‌دهند. مدل پیشنهادی در این مطالعه، رابطه‌­ی کاهندگی تئوری- تجربی برای منطقه­‌ی حساس بوشهر است که می‌­تواند برای ارزیابی ایمنی نیروگاه اتمی موجود، و برای طراحی واحدهای جدید نیروگاه اتمی در این منطقه استفاده شود.

تازه های تحقیق

[1] Probabilistic safety assessment for seismic events, IAEA, TECDOC-724 (1993).

 

[2] A Performance-Based approach to define the Site-Specific earthquake ground motion, USNRC, RG 1.208 (2007).

 

[3] Standard format and content of safety analysis EPORTS for nuclear power plants, USNRC, RG 1.70 (1978).

 

[4] Identification and characterization of seismic sources and determination of safe shutdown earthquake ground motion, USNRC, RG 1.165 (1997).

 

[5] Basic geologic and seismic information, USNRC, NUREG-0800, 2.5.1 (2014).

 

[6] Evaluation of seismic safety for existing nuclear installations, IAEA Safety Guide, No. NS-G-2.13 (2009).

 

[7] Earthquake engineering criteria for nuclear power plants, 10 CFR Part 50, Appendix S (2016).

 

[8] Recommendations for probabilistic seismic hazard analysis: Guidance on Uncertainty and Use of Experts, USNRC, NUREG-6372 (1997).

 

[9] Site characteristic and site parameters, USNRC, NUREG-0800, 2.0 (2016).

 

[10] J.A. Jackson, D.P. McKenzi, Active tectonics of the Alpine-Himalayan belt between Western Turkey and Pakistan, Geophys. J. R. astr. Soc. 77 (1984) 185-264.

 

[11] Ph. Vernant, F. Nilforoushan, D. Hatzfeld, M.R. Abbassi, C. Vigny, F. Masson, H. Nankali, J. Martinod, A. Ashtiani, R. Bayer, F. Tavakoli, J. Chery, Present day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophys. J. Int. 157 (2004) 381–398.

[12] F. Masson, M. Anvari, Y. Djamour, A. Walpersdorf, F. Tavakoli, M. Daignieres, H. Nankali, S. Van Gorp, Large scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophys. J. Int. 170 (2007) 995–1010.

 

[13] A. Hasankhani, H. Zaferani, Prediction of the characteristics of the near-fault field pulses by applying the orientational effect, J. Earth and Space Physics, 41:3 (1394) 391-402 (In Persian).

 

[14] L. Hutchings, E. Ioannidou, W. Foxall, N. Voulgaris, J. Savy, I. Kalogeras, L. Scognamiglio, G. Stavrakakis, A physically based strong ground-motion prediction methodology; application to PSHA and the 1999 Mw~6.0 Athens earthquake, Geophys. J. Int.168 (2007) 659–680.

 

[15] P. Spudich, Brian S.J. Chiou, Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory, Earthq. Spectra 24 (2008) 279-298.

 

[16] H. Zaferani, A. Noorzad, K. Bargi, Simulation of recorded movements during the Bam earthquake of 1382, by the Stochastic Finite Fault Method and quantitative study of the role of seismic source in the formation of observed destructions, J. Eng. Faculty of Tehran Uni. 41:6 (1386) 753-764 (In Persian).

 

[17] H. Zafarani, A. Noorzad, A. Ansari, Generation of near-fault response spectrum for a large dam in Iran, Hydropower and Dams 12 (2005) 51-55.

 

[18] H. Zafarani, M. Soghrat, Simulation of Ground Motion in the Zagros Region of Iran Using the Specific Barrier Model and the Stochastic Method, Bulletin of the Seismological Society of America 102 (2012) 2031–2045.

[19] H. Ye, G. Chen, Q. Zhou, Study on the intra-plate potential seismic sources, Proc. Fifth International Conf. Seismic Zonation, France (1995) 1424-1430.

 

[20] N. Mirzaei, M. Gao, Y.T. Chen, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J. Earthquake prediction Research 7 (1998) 465-495.

 

[21] D.B. Snyder, M. Barazangi, Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observation, Tectonics J. 5 (1986) 361-373.

 

[22] M. Alavi, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectono-physics J. 229 (1994) 211-238.

 

[23] M. Berberian, Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics J. 241 (1995) 193-224.

 

[24] M. Alavi, Tectonostratigraphic evolution of the Zagrosides of Iran, Geology. 8(3) (1980) 144-149.

 

[25] N. Mirzaei, M. Gao, Y.T. Chen, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces, J. Earthquake prediction Research 7 (1998) 465-495.

 

[26] L. Reiter, Earthquake hazard analysis: issues and insights, Colombia University Press (1990).

 

[27] P. Molnar, W.P. Chen, Seismicity and mountain building, Academic Press (1982) 41-57.

 

[28] J.A. Jackson, T.J. Fitch, Basement faulting and the focal depth of the large earthquakes in the Zagros mountains (Iran), Geophys. J. R. Astr. Soc. 64 (1981) 561-586.

 

[29] J. Ni, M. Barazangi, Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas, J. Geophys. Res. 91 (1986) 8205-8218.

 

[30] K. Priestley, C. Baker, J. Jackson, Implications of earthquake focal mechanism data for the active tectonics of the south Caspian basin and surrounding regions, Geophys. J. Inter. 118 (1994) 111-141.

[31] F.J. Von Dollen, J.N. Alt, D. Tocher, A. Nowroozi, Seismological and geological investigations near Bandar Abbas, Iran, Geol. Soc. Am. Abstr. 9 (1977) 521.

 

[32] M. Niazi, H. Shimamura, M. Matsuura, Micro earthquakes and crustal structure off the Makran coast of Iran, Geophys. Res. Lett. 7 (1980) 297-300.

 

[33] J.A. Jackson, T.J. Fitch, Seismotectonic implications of relocated aftershock sequences in Iran and Turkey, Geophys. J. R. Astr. Soc. 57 (1979) 209-229.

 

[34] J.W. Dewey, A. Grantz, The Qir earthquake of April 10, 1972 in the Zagros Mountains of southern Iran: seism tectonic aspects and some results of a field reconnaissance, Bull. Seism. Soc. Am. 63 (1973) 2071-2090.

 

[35] J.A. Jackson, Reactivation of basement faults and crustal shortening in orogenic belts, Nature J. 283 (1980) 343-346.

 

[36] J.A. Jackson, T.J. Fitch, D.P. McKenzi, Active thrusting and the evolution of the Zagros fold belt, Geol. Soc. Spec. Pub. 9 (1981) 371-379.

 

[37] M. Berberian, Active faulting and tectonics of Iran, Geol. Soc. Am. Geodyn. 3 (1981) 33-69.

 

[38] H. Zaferani, A. Noorzad, Earthquake engineering and earthquake simulation, Tehran University Press (1392) (In Persian).

 

[39] T. Hanks, R. McGuire, The character of high-frequency strong ground motion, Bull. Seism. Soc. Am. 71 (1981)2071–2095.

 

[40] D. Boore, Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seism. Soc. Am. 73 (1983)1865–1894.

 

[41] S. Hartzell, Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5 (1978)1–14.

 

[42] K. Irikura, The construction of large earthquake by a superposition of small events, Earthquake Engineering Tenth World Conference. Rotterdam (1992).

 

 

[43] I. Beresnev, G. Atkinson, Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California earthquake, part I: Validation on rock sites, Bull. Seism. Soc. Am. 88 (1998) 1392–1401.

 

[44] I. Beresnev, G. Atkinson, FINSIM a FORTRAN program for simulating stochastic acceleration time histories from finite faults, Seism. Res. Lett. 69 (1998) 27–32.

 

[45] D. Motazedian, G. Atkinson, Stochastic finite-fault model based on dynamic corner frequency, Bull. Seism. Soc. Am. 95 (2005) 995–1010.

 

[46] G.P. Mavroeidis, A.S. Papageorgiou, A Mathematical Representation of Near-Fault Ground Motions, Bull. Seismol. Soc. Am. 93:3 (2003) 1099-1131.

 

[47] G.M. Atkinson, D.M. Boore, Earthquake Ground-Motion Prediction Equations for Eastern North America, Bulletin of the Seismological Society of America 96:6 (2006) 2181–2205.

 

[48] H. Zafarani, B. Hassani, Site response and source spectra of S waves in the Zagros region, Iran, J. Seismol. 17:2 (2013) 645-666.

 

[49] D.L. Wells, K.J. Coppersmith, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am. 84 (1994) 974–1002.

 

[50] A. Frankel, A Constant Stress–Drop Model for Producing Broad Band Synthetic Seismograms: Comparison with the Next Generation Attenuation Relations, Bull. Seismol. Soc. Am. 99:2 (2009) 664–680.

 

[51] N.J. Gregor, W.J. Silva, I.G. Wong, R.R. Youngs, Ground-Motion Attenuation Relationships for Cascadia Subduction Zone Megathrust Earthquakes Based on a Stochastic Finite-Fault Model, Bulletin of the Seismological Society of America 92:5 (2002) 1923–1932.

 

[52] S. Akkar, J.J. Bommer, Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region, and the Middle East, Seismol. Res. Lett. 81 (2010) 195–206.

 

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Ground Motion and Development of Earthquake Attenuation Relationships for Boushehr NPP Site Using the Stochastic Finite Fault Method

نویسندگان [English]

  • M. R Aram 1
  • A Hasankhani 2
چکیده [English]

According to the IAEA and USNRC (United State Nuclear Regulatory Commision) regulations, calculating a strong ground motion during an earthquake is of great importance for the design of nuclear facilities, especially nuclear power plants. In the absence of precise seismic studies and in case of severe earthquakes, many radioactive contaminants are released into the environment, with irreparable physical and financial losses, hazarding the nuclear facilities, people and the environment. In this research, in order to develop the earthquake attenuation relationships for Boushehr, an important region, simulation of the ground motion was used along with the stochastic finite fault method. The results obtained from the simulation have been compared with the results obtained from the valid world relations for the Zagros region. Evidently, they show good consistency. The proposed model is a theory-empirical relationship of the Bushehr susceptible region, which can be used to assess the safety of the existing nuclear power plant in Boushehr and to design new nuclear power plants in the future.
 

کلیدواژه‌ها [English]

  • Nuclear Safety
  • Boushehr Nuclear Power Plant
  • Earthquake Simulation
  • Seismic Ground Motion
  • Attenuation Relation Ships
  • Stochastic Finite Fault Method

[1] Probabilistic safety assessment for seismic events, IAEA, TECDOC-724 (1993).

 

[2] A Performance-Based approach to define the Site-Specific earthquake ground motion, USNRC, RG 1.208 (2007).

 

[3] Standard format and content of safety analysis EPORTS for nuclear power plants, USNRC, RG 1.70 (1978).

 

[4] Identification and characterization of seismic sources and determination of safe shutdown earthquake ground motion, USNRC, RG 1.165 (1997).

 

[5] Basic geologic and seismic information, USNRC, NUREG-0800, 2.5.1 (2014).

 

[6] Evaluation of seismic safety for existing nuclear installations, IAEA Safety Guide, No. NS-G-2.13 (2009).

 

[7] Earthquake engineering criteria for nuclear power plants, 10 CFR Part 50, Appendix S (2016).

 

[8] Recommendations for probabilistic seismic hazard analysis: Guidance on Uncertainty and Use of Experts, USNRC, NUREG-6372 (1997).

 

[9] Site characteristic and site parameters, USNRC, NUREG-0800, 2.0 (2016).

 

[10] J.A. Jackson, D.P. McKenzi, Active tectonics of the Alpine-Himalayan belt between Western Turkey and Pakistan, Geophys. J. R. astr. Soc. 77 (1984) 185-264.

 

[11] Ph. Vernant, F. Nilforoushan, D. Hatzfeld, M.R. Abbassi, C. Vigny, F. Masson, H. Nankali, J. Martinod, A. Ashtiani, R. Bayer, F. Tavakoli, J. Chery, Present day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophys. J. Int. 157 (2004) 381–398.

[12] F. Masson, M. Anvari, Y. Djamour, A. Walpersdorf, F. Tavakoli, M. Daignieres, H. Nankali, S. Van Gorp, Large scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophys. J. Int. 170 (2007) 995–1010.

 

[13] A. Hasankhani, H. Zaferani, Prediction of the characteristics of the near-fault field pulses by applying the orientational effect, J. Earth and Space Physics, 41:3 (1394) 391-402 (In Persian).

 

[14] L. Hutchings, E. Ioannidou, W. Foxall, N. Voulgaris, J. Savy, I. Kalogeras, L. Scognamiglio, G. Stavrakakis, A physically based strong ground-motion prediction methodology; application to PSHA and the 1999 Mw~6.0 Athens earthquake, Geophys. J. Int.168 (2007) 659–680.

 

[15] P. Spudich, Brian S.J. Chiou, Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory, Earthq. Spectra 24 (2008) 279-298.

 

[16] H. Zaferani, A. Noorzad, K. Bargi, Simulation of recorded movements during the Bam earthquake of 1382, by the Stochastic Finite Fault Method and quantitative study of the role of seismic source in the formation of observed destructions, J. Eng. Faculty of Tehran Uni. 41:6 (1386) 753-764 (In Persian).

 

[17] H. Zafarani, A. Noorzad, A. Ansari, Generation of near-fault response spectrum for a large dam in Iran, Hydropower and Dams 12 (2005) 51-55.

 

[18] H. Zafarani, M. Soghrat, Simulation of Ground Motion in the Zagros Region of Iran Using the Specific Barrier Model and the Stochastic Method, Bulletin of the Seismological Society of America 102 (2012) 2031–2045.

[19] H. Ye, G. Chen, Q. Zhou, Study on the intra-plate potential seismic sources, Proc. Fifth International Conf. Seismic Zonation, France (1995) 1424-1430.

 

[20] N. Mirzaei, M. Gao, Y.T. Chen, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J. Earthquake prediction Research 7 (1998) 465-495.

 

[21] D.B. Snyder, M. Barazangi, Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observation, Tectonics J. 5 (1986) 361-373.

 

[22] M. Alavi, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectono-physics J. 229 (1994) 211-238.

 

[23] M. Berberian, Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics J. 241 (1995) 193-224.

 

[24] M. Alavi, Tectonostratigraphic evolution of the Zagrosides of Iran, Geology. 8(3) (1980) 144-149.

 

[25] N. Mirzaei, M. Gao, Y.T. Chen, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces, J. Earthquake prediction Research 7 (1998) 465-495.

 

[26] L. Reiter, Earthquake hazard analysis: issues and insights, Colombia University Press (1990).

 

[27] P. Molnar, W.P. Chen, Seismicity and mountain building, Academic Press (1982) 41-57.

 

[28] J.A. Jackson, T.J. Fitch, Basement faulting and the focal depth of the large earthquakes in the Zagros mountains (Iran), Geophys. J. R. Astr. Soc. 64 (1981) 561-586.

 

[29] J. Ni, M. Barazangi, Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas, J. Geophys. Res. 91 (1986) 8205-8218.

 

[30] K. Priestley, C. Baker, J. Jackson, Implications of earthquake focal mechanism data for the active tectonics of the south Caspian basin and surrounding regions, Geophys. J. Inter. 118 (1994) 111-141.

[31] F.J. Von Dollen, J.N. Alt, D. Tocher, A. Nowroozi, Seismological and geological investigations near Bandar Abbas, Iran, Geol. Soc. Am. Abstr. 9 (1977) 521.

 

[32] M. Niazi, H. Shimamura, M. Matsuura, Micro earthquakes and crustal structure off the Makran coast of Iran, Geophys. Res. Lett. 7 (1980) 297-300.

 

[33] J.A. Jackson, T.J. Fitch, Seismotectonic implications of relocated aftershock sequences in Iran and Turkey, Geophys. J. R. Astr. Soc. 57 (1979) 209-229.

 

[34] J.W. Dewey, A. Grantz, The Qir earthquake of April 10, 1972 in the Zagros Mountains of southern Iran: seism tectonic aspects and some results of a field reconnaissance, Bull. Seism. Soc. Am. 63 (1973) 2071-2090.

 

[35] J.A. Jackson, Reactivation of basement faults and crustal shortening in orogenic belts, Nature J. 283 (1980) 343-346.

 

[36] J.A. Jackson, T.J. Fitch, D.P. McKenzi, Active thrusting and the evolution of the Zagros fold belt, Geol. Soc. Spec. Pub. 9 (1981) 371-379.

 

[37] M. Berberian, Active faulting and tectonics of Iran, Geol. Soc. Am. Geodyn. 3 (1981) 33-69.

 

[38] H. Zaferani, A. Noorzad, Earthquake engineering and earthquake simulation, Tehran University Press (1392) (In Persian).

 

[39] T. Hanks, R. McGuire, The character of high-frequency strong ground motion, Bull. Seism. Soc. Am. 71 (1981)2071–2095.

 

[40] D. Boore, Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seism. Soc. Am. 73 (1983)1865–1894.

 

[41] S. Hartzell, Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5 (1978)1–14.

 

[42] K. Irikura, The construction of large earthquake by a superposition of small events, Earthquake Engineering Tenth World Conference. Rotterdam (1992).

 

 

[43] I. Beresnev, G. Atkinson, Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California earthquake, part I: Validation on rock sites, Bull. Seism. Soc. Am. 88 (1998) 1392–1401.

 

[44] I. Beresnev, G. Atkinson, FINSIM a FORTRAN program for simulating stochastic acceleration time histories from finite faults, Seism. Res. Lett. 69 (1998) 27–32.

 

[45] D. Motazedian, G. Atkinson, Stochastic finite-fault model based on dynamic corner frequency, Bull. Seism. Soc. Am. 95 (2005) 995–1010.

 

[46] G.P. Mavroeidis, A.S. Papageorgiou, A Mathematical Representation of Near-Fault Ground Motions, Bull. Seismol. Soc. Am. 93:3 (2003) 1099-1131.

 

[47] G.M. Atkinson, D.M. Boore, Earthquake Ground-Motion Prediction Equations for Eastern North America, Bulletin of the Seismological Society of America 96:6 (2006) 2181–2205.

 

[48] H. Zafarani, B. Hassani, Site response and source spectra of S waves in the Zagros region, Iran, J. Seismol. 17:2 (2013) 645-666.

 

[49] D.L. Wells, K.J. Coppersmith, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am. 84 (1994) 974–1002.

 

[50] A. Frankel, A Constant Stress–Drop Model for Producing Broad Band Synthetic Seismograms: Comparison with the Next Generation Attenuation Relations, Bull. Seismol. Soc. Am. 99:2 (2009) 664–680.

 

[51] N.J. Gregor, W.J. Silva, I.G. Wong, R.R. Youngs, Ground-Motion Attenuation Relationships for Cascadia Subduction Zone Megathrust Earthquakes Based on a Stochastic Finite-Fault Model, Bulletin of the Seismological Society of America 92:5 (2002) 1923–1932.

 

[52] S. Akkar, J.J. Bommer, Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region, and the Middle East, Seismol. Res. Lett. 81 (2010) 195–206.