اثر تابش‌دهی گاما بر ماندگاری و ویژگی‌های کیفی میوه‌ی زرشک تازه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 بخش علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 پژوهشکده‌ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد خوراسگان

چکیده

تابش‌­دهی گاما به علت بازدارندگی رشد میکروبی در میوه­‌های تازه، می­‌تواند ایمنی و ماندگاری آن‌ها را افزایش دهد. در این پژوهش میوه­‌ی زرشک تازه تحت ­تأثیر تابش گاما در دزهای 0.5 تا  kGy2 قرار گرفت و برخی از ویژگی­‌های فیزیکوشیمیایی، میکروبی و حسی آن در طی 40 روز نگه­داری ارزیابی شد. در طی نگه­داری، روند کاهشی اسیدیته و افزایشی pH و محتوای مواد جامد محلول در اثر تابش­‌دهی مشاهده شد. از نظر اُفت وزن، تفاوت معنی‌­داری بین شاهد و تیمارها مشاهده نشد. بلافاصله پس از تابش­‌دهی، محتوای ترکیبات فنولی و آنتوسیانین کل با افزایش دز تابش‌­دهی کاهش یافت و این روند کاهشی در طی نگه­داری نیز مشاهده شد. تابش­‌دهی، شاخص­های رنگ میوه­‌ی زرشک را تحت تأثیر قرار نداد، اما در طی نگه­داری به صورت معنی­‌داری کاهش یافتند. تابش­‌دهی به ویژه در دزهای بالاتر از kGy 1.5 سبب بازدارندگی رشد میکروبی در طی دوره­ی نگه­داری شد. براساس نظر ارزیاب­‌ها، نمونه­‌های تابش­‌دهی شده در دزهای بالاتر از kGy 1.25 در انتهای دوره­‌ی نگه­داری قابل مصرف بودند. به طور کلی، با توجه به تأثیر تابش بر ویژگی­‌های فیزیکوشیمیایی، میکروبی و حسی، دامنه­‌ی دز 1.25 تا kGy 2 برای افزایش ماندگاری میوه­‌ی زرشک می­‌تواند استفاده شود.

تازه های تحقیق

[1] S.B. Ardestani, M.A. Sahari, M. Barzegar, Effect of extraction and processing conditions on organic acids of barberry fruits, J. Food Biochem. 39(5) (2015) 554-565.

 

[2] S.B. Ardestani, M.A. Sahari, M. Barzegar, Effect ofextraction and processing conditions on anthocyanins of barberry, J. Food Process. Preserv. 40(6) (2016) 1407-1420.

 

[3] Anonymous, Iranian Ministry of Jihad-e Agriculture Yearbook, (2016) Available at: http://www.maj.ir/.

 

[4] M. Farhadi Chitgar, M. Aalami, Y. Maghsoudlou, E. Milani, Comparative study on the effect of heat treatment and sonication on the quality of barberry (Berberis vulgaris) juice, J. Food Process. Preserv. 41(3) (2017) 1-9.

 

[5] A. Alemardan, W. Asadi, M. Rezaei, L. Tabrizi, S. Mohammadi, Cultivation of Iranian seedless barberry (Berberis integerrima ‘Bidaneh’): A medicinal shrub, Ind. Crops Prod. 50 (2013) 276-287.

 

[6] H.M. Shahbaz, J.J. Ahn, K. Akram, H.Y. Kim, E.J. Park, J.H. Kwon, Chemical and sensory quality of fresh pomegranate fruits exposed to gamma radiation as quarantine treatment, Food Chem. 145 (2014) 312-318.

 

[7] R.G. Moreira, E.M. Castell-Perez, Irradiation applications in fruit and other fresh produce processing. In: S Rodrigues, FAN Fernandes (Eds.), Advances in Fruit Processing Technologies (2012) 203-217.

 

[8] K. Thang, K. Au, C. Rakovski, A. Prakash, Effect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries, J. Sci. Food Agric. 96(13) (2016) 4382-4389.

 

[9] H.R. Alighourchi, M. Barzegar, M.A. Sahari, S. Abbasi, Gamma ray effects on some physicochemical properties, functional compounds and antioxidant activity of pomegranate juice, J. Nucl. Sci. Tech. 65 (2013) 65-75 (In Persian).

 

 

[10] P.R. Hussain, M.A. Dar, A.M. Wani,  Impact of radiation processing on quality during storage and post-refrigeration decay of plum (Prunus domestica L.) cv. Santaroza, Radiat. Phys. Chem. 85 (2013) 234-242.

 

[11] P.R. Hussain, R.S. Meena, M.A. Dar, A.M. Wani, Studies on enhancing the keeping quality of peach (Prunus persica Bausch) Cv. Elberta by gamma-irradiation, Radiat. Phys. Chem. 77(4) (2008) 473-481.

 

[12] K.H. Kim, H.S. Yook, Effect of gamma irradiation on quality of kiwifruit (Actinidia deliciosa var. deliciosa cv. Hayward), Radiat. Phys. Chem. 78(6) (2009) 414-421.

 

[13] M.A. Moreno, M.E. Castell-Perez, C. Gomes, P.F. Da Silva, R.G. Moreira, Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L.) at medium dose levels (1.0–3.2 kGy), LWT-Food Sci. Technol. 40(7) (2007) 1123-1132.

 

[14] L. Yu, C. Reitmeier, M. Gleason, G. Nonnecke, D. Olson, R. Gladon, Quality of electron beam irradiated strawberries, J. Food Sci. 60(5) (1995) 1084-1087.

 

[15] J.V. Tezotto-Uliana, N.D. Berno, F.R.Q. Saji, R.A. Kluge, Gamma radiation: An efficient technology to conserve the quality of fresh raspberries, Sci. Hort. 164 (2013) 348-352.

 

[16] S. Cabo Verde, M. Trigo, M. Sousa, A. Ferreira, A. Ramos, I. Nunes, C. Junqueira, R. Melo, P. Santos, M. Botelho, Effects of gamma radiation on raspberries: Safety and quality issues,  J. Toxicol. Environ. Health, Part A, 76(4-5) (2013) 291-303.

 

[17] J.B. Golding, B.L. Blades, S. Satyan, A.J. Jessup, L.J. Spohr, A.M. Harris, C. Banos, J.B. Davies, Low dose gamma irradiation does not affect the quality, proximate or nutritional profile of ‘Brigitta’blueberry and ‘Maravilla’raspberry fruit, Postharvest Biol. Technol. 96 (2014) 49-52.

 

[18] Z. Hussein, O.J. Caleb, K. Jacobs, M. Manley, U.L. Opara, Effect of perforation-mediated modified atmosphere packaging and storage duration on physicochemical properties and microbial quality of fresh minimally processed ‘Acco’pomegranate arils, LWT-Food Sci. Technol. 64(2) (2015) 911-918.

[19] S.B. Ardestani, M.A. Sahari, M. Barzegar, S. Abbasi, Some physicochemical properties of Iranian native barberry fruits (abi and poloei): Berberis integerrima and Berberis vulgaris, J. Food Pharm. Sci. 1(3) (2013) 60-67.

 

[20] H. Yildiz, S. Ercisli, M. Sengul, E.F. Topdas, O. Beyhan, O. Cakir, H.K. Narmanlioglu, E. Orhan, Some physicochemical characteristics, bioactive content and antioxidant characteristics ofnon-sprayed Barberry (Berberis vulgaris L.) fruits from Turkey, Erwerbs-Obstbau 56(4) (2014) 123-129.

 

[21] M. Shamaila, Water and its relation to fresh produce, in in: Lamikanra, O., Imam, S., Ukuku, D. (Eds.), Produce degradation: pathways and prevention, CRC Press, New York (2005) 267-291.

 

[22] K. Warriner, S. Zivanovic, Microbial metabolites in fruits and vegetables, in in: Lamikanra, O., Imam, S., Ukuku, D. (Eds.), Produce degradation: pathways and prevention, CRC Press, New York (2005) 505-528.

 

[23] P.R. Hussain, P.P. Suradkar, A.M. Wani, M.A. Dar, Potential of carboxymethyl cellulose and γ-irradiation to maintain quality and control disease of peach fruit, Int. J. Biol. Macromol. 82 (2016) 114-126.

 

[24] P.R. Hussain, M.A. Dar, A.M. Wani, Effect of edible coating and gamma irradiation on inhibition of mould growth and quality retention of strawberry during refrigerated storage, Int. J. Food Sci. Tech. 47(11) (2012) 2318-2324.

 

[25] D. Guerreiro, J. Madureira, T. Silva, R. Melo, P.M. Santos, A. Ferreira, M.J. Trigo, A.N. Falcão, F.M. Margaça, S.C. Verde, Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation, Innov. Food Sci.  Emerg. Technol. 36 (2016) 1-9.

 

[26] T. Serapian, A. Prakash, Comparative evaluation of the effect of methyl bromide fumigation and phytosanitary irradiation on the quality of fresh strawberries, Sci. Hort. 201 (2016) 109-117.

 

 

 

[27] S.S. Lee, E.M. Lee, B.C. An, T.H. Kim, K.S. Lee, J.Y. Cho, S.H. Yoo, J.S. Bae, B.Y. Chung, Effects of irradiation on decolourisation and biological activity in Schizandra chinensis extracts, Food Chem. 125(1) (2011) 214-220.

 

[28] X. Fan, K.J. Sokorai, Effects of gamma irradiation, modified atmosphere packaging, and delay of irradiation on quality of fresh-cut iceberg lettuce, HortScience 46(2) (2011) 273-277.

 

[29] P.R. Hussain, A.M. Wani, R.S. Meena, M.A. Dar, Gamma irradiation induced enhancement of phenylalanine ammonia-lyase (PAL) and antioxidant activity in peach (Prunus persica Bausch, Cv. Elberta), Radiat. Phys. Chem. 79(9) (2010) 982-989.

 

[30] H.J. Ahn, J.H. Kim, J.K. Kim, D.H. Kim, H.S. Yook, M.W. Byun, Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.), Food Chem. 89(4) (2005) 589-597.

[31] C. Kavitha, A. Kuna, T. Supraja, S.B. Sagar, T. Padmavathi, N. Prabhakar, Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit, J. Food Sci. Technol. 52(5) (2015) 3123-3128.

 

[32] S.K. El-Samahy, B.M. Youssef, A.A. Askar, H.M.M. Swailam, Microbiological and chemical properties of irradiated mango, J. Food Safety 20(3) (2000) 139-156.

 

[33] M. Alothman, R. Bhat, A. Karim, Effects of radiation processing on phytochemicals and antioxidants in plant produce, Trends Food Sci. Technol. 20(5) (2009) 201-212.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Gamma Irradiation on the Shelf-Life and Quality Characteristics of Fresh Barberry Fruit

نویسندگان [English]

  • H. R Akhavan 1
  • S Berenji Ardestani 2
  • M Fazel 3
چکیده [English]

Gamma irradiation has shown to greatly reduce potential microbiological risk of fresh fruits, resulting in improved microbial safety as well as extending their shelf life. The effects of 0.5-2 kGy gamma doses on some physicochemical, microbial and sensory properties of fresh barberry fruits (Berberis vulgaris) during the refrigerated storage for 40 days were evaluated. The decrease trend of titratable acidity and an increase trend of pH and total soluble solid were reduced by gamma radiation during storage. The weight loss of the packed barberry was not significant between control and treated samples. The total anthocyanin and total phenolic contents of barberry fruits decreased in a dose-dependent manner immediately after irradiation and after subsequent storage. Gamma irradiation did not affect color indices of the fresh berberis fruits, but a significant decrease in color indices were observed during the storage time. The microbial growth was significantly inhibited, especially at doses higher than 1.5 kGy during the storage. Based on the panelist suggestion, the samples irradiated at >1.25 kGy were still between the acceptance limit at the end of the storage period. In general, it is recommended that according to the effect of gamma radition on physicochemical, microbial and sensorial characteristics, doses of 1.25-2 kGy could be used.

کلیدواژه‌ها [English]

  • Barberry Fruits
  • Gamma Irradiation
  • Non-Thermal Processing
  • Packaging
  • Extended Shelf Life
  • Microbial Growth

[1] S.B. Ardestani, M.A. Sahari, M. Barzegar, Effect of extraction and processing conditions on organic acids of barberry fruits, J. Food Biochem. 39(5) (2015) 554-565.

 

[2] S.B. Ardestani, M.A. Sahari, M. Barzegar, Effect ofextraction and processing conditions on anthocyanins of barberry, J. Food Process. Preserv. 40(6) (2016) 1407-1420.

 

[3] Anonymous, Iranian Ministry of Jihad-e Agriculture Yearbook, (2016) Available at: http://www.maj.ir/.

 

[4] M. Farhadi Chitgar, M. Aalami, Y. Maghsoudlou, E. Milani, Comparative study on the effect of heat treatment and sonication on the quality of barberry (Berberis vulgaris) juice, J. Food Process. Preserv. 41(3) (2017) 1-9.

 

[5] A. Alemardan, W. Asadi, M. Rezaei, L. Tabrizi, S. Mohammadi, Cultivation of Iranian seedless barberry (Berberis integerrima ‘Bidaneh’): A medicinal shrub, Ind. Crops Prod. 50 (2013) 276-287.

 

[6] H.M. Shahbaz, J.J. Ahn, K. Akram, H.Y. Kim, E.J. Park, J.H. Kwon, Chemical and sensory quality of fresh pomegranate fruits exposed to gamma radiation as quarantine treatment, Food Chem. 145 (2014) 312-318.

 

[7] R.G. Moreira, E.M. Castell-Perez, Irradiation applications in fruit and other fresh produce processing. In: S Rodrigues, FAN Fernandes (Eds.), Advances in Fruit Processing Technologies (2012) 203-217.

 

[8] K. Thang, K. Au, C. Rakovski, A. Prakash, Effect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries, J. Sci. Food Agric. 96(13) (2016) 4382-4389.

 

[9] H.R. Alighourchi, M. Barzegar, M.A. Sahari, S. Abbasi, Gamma ray effects on some physicochemical properties, functional compounds and antioxidant activity of pomegranate juice, J. Nucl. Sci. Tech. 65 (2013) 65-75 (In Persian).

 

 

[10] P.R. Hussain, M.A. Dar, A.M. Wani,  Impact of radiation processing on quality during storage and post-refrigeration decay of plum (Prunus domestica L.) cv. Santaroza, Radiat. Phys. Chem. 85 (2013) 234-242.

 

[11] P.R. Hussain, R.S. Meena, M.A. Dar, A.M. Wani, Studies on enhancing the keeping quality of peach (Prunus persica Bausch) Cv. Elberta by gamma-irradiation, Radiat. Phys. Chem. 77(4) (2008) 473-481.

 

[12] K.H. Kim, H.S. Yook, Effect of gamma irradiation on quality of kiwifruit (Actinidia deliciosa var. deliciosa cv. Hayward), Radiat. Phys. Chem. 78(6) (2009) 414-421.

 

[13] M.A. Moreno, M.E. Castell-Perez, C. Gomes, P.F. Da Silva, R.G. Moreira, Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L.) at medium dose levels (1.0–3.2 kGy), LWT-Food Sci. Technol. 40(7) (2007) 1123-1132.

 

[14] L. Yu, C. Reitmeier, M. Gleason, G. Nonnecke, D. Olson, R. Gladon, Quality of electron beam irradiated strawberries, J. Food Sci. 60(5) (1995) 1084-1087.

 

[15] J.V. Tezotto-Uliana, N.D. Berno, F.R.Q. Saji, R.A. Kluge, Gamma radiation: An efficient technology to conserve the quality of fresh raspberries, Sci. Hort. 164 (2013) 348-352.

 

[16] S. Cabo Verde, M. Trigo, M. Sousa, A. Ferreira, A. Ramos, I. Nunes, C. Junqueira, R. Melo, P. Santos, M. Botelho, Effects of gamma radiation on raspberries: Safety and quality issues,  J. Toxicol. Environ. Health, Part A, 76(4-5) (2013) 291-303.

 

[17] J.B. Golding, B.L. Blades, S. Satyan, A.J. Jessup, L.J. Spohr, A.M. Harris, C. Banos, J.B. Davies, Low dose gamma irradiation does not affect the quality, proximate or nutritional profile of ‘Brigitta’blueberry and ‘Maravilla’raspberry fruit, Postharvest Biol. Technol. 96 (2014) 49-52.

 

[18] Z. Hussein, O.J. Caleb, K. Jacobs, M. Manley, U.L. Opara, Effect of perforation-mediated modified atmosphere packaging and storage duration on physicochemical properties and microbial quality of fresh minimally processed ‘Acco’pomegranate arils, LWT-Food Sci. Technol. 64(2) (2015) 911-918.

[19] S.B. Ardestani, M.A. Sahari, M. Barzegar, S. Abbasi, Some physicochemical properties of Iranian native barberry fruits (abi and poloei): Berberis integerrima and Berberis vulgaris, J. Food Pharm. Sci. 1(3) (2013) 60-67.

 

[20] H. Yildiz, S. Ercisli, M. Sengul, E.F. Topdas, O. Beyhan, O. Cakir, H.K. Narmanlioglu, E. Orhan, Some physicochemical characteristics, bioactive content and antioxidant characteristics ofnon-sprayed Barberry (Berberis vulgaris L.) fruits from Turkey, Erwerbs-Obstbau 56(4) (2014) 123-129.

 

[21] M. Shamaila, Water and its relation to fresh produce, in in: Lamikanra, O., Imam, S., Ukuku, D. (Eds.), Produce degradation: pathways and prevention, CRC Press, New York (2005) 267-291.

 

[22] K. Warriner, S. Zivanovic, Microbial metabolites in fruits and vegetables, in in: Lamikanra, O., Imam, S., Ukuku, D. (Eds.), Produce degradation: pathways and prevention, CRC Press, New York (2005) 505-528.

 

[23] P.R. Hussain, P.P. Suradkar, A.M. Wani, M.A. Dar, Potential of carboxymethyl cellulose and γ-irradiation to maintain quality and control disease of peach fruit, Int. J. Biol. Macromol. 82 (2016) 114-126.

 

[24] P.R. Hussain, M.A. Dar, A.M. Wani, Effect of edible coating and gamma irradiation on inhibition of mould growth and quality retention of strawberry during refrigerated storage, Int. J. Food Sci. Tech. 47(11) (2012) 2318-2324.

 

[25] D. Guerreiro, J. Madureira, T. Silva, R. Melo, P.M. Santos, A. Ferreira, M.J. Trigo, A.N. Falcão, F.M. Margaça, S.C. Verde, Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation, Innov. Food Sci.  Emerg. Technol. 36 (2016) 1-9.

 

[26] T. Serapian, A. Prakash, Comparative evaluation of the effect of methyl bromide fumigation and phytosanitary irradiation on the quality of fresh strawberries, Sci. Hort. 201 (2016) 109-117.

 

 

 

[27] S.S. Lee, E.M. Lee, B.C. An, T.H. Kim, K.S. Lee, J.Y. Cho, S.H. Yoo, J.S. Bae, B.Y. Chung, Effects of irradiation on decolourisation and biological activity in Schizandra chinensis extracts, Food Chem. 125(1) (2011) 214-220.

 

[28] X. Fan, K.J. Sokorai, Effects of gamma irradiation, modified atmosphere packaging, and delay of irradiation on quality of fresh-cut iceberg lettuce, HortScience 46(2) (2011) 273-277.

 

[29] P.R. Hussain, A.M. Wani, R.S. Meena, M.A. Dar, Gamma irradiation induced enhancement of phenylalanine ammonia-lyase (PAL) and antioxidant activity in peach (Prunus persica Bausch, Cv. Elberta), Radiat. Phys. Chem. 79(9) (2010) 982-989.

 

[30] H.J. Ahn, J.H. Kim, J.K. Kim, D.H. Kim, H.S. Yook, M.W. Byun, Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.), Food Chem. 89(4) (2005) 589-597.

[31] C. Kavitha, A. Kuna, T. Supraja, S.B. Sagar, T. Padmavathi, N. Prabhakar, Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit, J. Food Sci. Technol. 52(5) (2015) 3123-3128.

 

[32] S.K. El-Samahy, B.M. Youssef, A.A. Askar, H.M.M. Swailam, Microbiological and chemical properties of irradiated mango, J. Food Safety 20(3) (2000) 139-156.

 

[33] M. Alothman, R. Bhat, A. Karim, Effects of radiation processing on phytochemicals and antioxidants in plant produce, Trends Food Sci. Technol. 20(5) (2009) 201-212.