بازیابی لانتانیدها و ایتریم از کود شیمیایی سوپرفسفات ساده (SSP) با استفاده از استخراج‌کننده‌ی EHPA2D و مخلوط هم‌افزای آن با TBP

نویسندگان

1 پژوهشکده‌ی چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 گروه مهندسی معدن، دانشکده ی فنی و مهندسی، دانشگاه آزاد واحد علوم و تحقیقات، صندوق پستی: 143-14115، تهران ـ ایران

چکیده

بازیابی لانتانیدهای اصلی (لانتانیم، سریم، اروپیم و اربیم) و ایتریم با استفاده از استخراج‌کننده‌ی آلی دی اتیل هگزیل فسفریک اسید (EHPA2D) از محیط‌های نیتراتی حاصل از انحلال کود سوپر فسفات ساده مورد بررسی قرار گرفت. بعد‌ ‌از خردایش نمونه (ی‌ کود)، ابتدا عملیات فروشویی در محیط نیتریک اسید %60 و در دمای 65 درجه‌ی سلسیوس انجام شد. تجزیه‌ی عنصری محلول فروشویی، بازده کلی عملیات فروشویی را بالغ بر %91 به دست داد. با رسوب‌گیری از محلول فروشویی، حدود %75 درصد عناصر مزاحم موجود در محلول حذف شدند. فاز آبی نهایی و محیط‌های نیتراتی ساختگی وارد مرحله‌ی استخراج حلالی شدند. پارامترهای اصلی مرحله‌ی استخراج، غلظت استخراج‌کننده، غلظت نیتریک اسید، دما، زمان تماس و نسبت فازها بود. پس از مشخص شدن شرایط بهینه‌ی استخراج، طی یک مرحله استخراج La، Ce، Y، Er و Eu، به ترتیب، به میزان 65/‌‌97، 82/97، 12/98، 82/95 و 34/96 درصد در فاز آلی بازیابی شدند. فاز آلی باردار وارد مرحله‌ی عریان‌سازی شد. متغیرهای اصلی فرایند عریان‌سازی، غلظت عریان‌‌ساز و زمان تماس بود. پس از مشخص شدن شرایط بهینه‌ی عریان‌سازی فاز آلی، با یک مرحله‌ عریان‌‌سازی La، Ce، Y، Er و Eu، به ترتیب‌، به میزان 12/97، 48/96، 25/97، 31/98 و 12/97 درصد از فاز آلی‌باردار بازیابی شدند. هم‌‌افزایی حلال‌های TBP و EHPA2D بازیابی لانتانیدها و ایتریم را حدود‌ 3 درصد افزایش داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Recovery of lanthanides and yttrium from single super phosphate fertilizer using D2EHPA and a synergistic D2EHPA-TBP mixture

نویسندگان [English]

  • Saeid AlamdarMilani 1
  • SeyedHossein Nazemi 2
  • Bahram Rezaei 2
چکیده [English]

 The recovery of lanthanides (lanthanum, cerium, erbium, and europium) and yttrium from nitrate leach liquor of single super phosphate fertilizer was investigated using di-(2-ethylhexyl) phosphoric acid (D2EHPA). After the preliminary crushing in specified dimensions, first, nitric acid leaching was accomplished using 60% (13.28 mol L-1) nitric acid at 65˚C, which resulted in the recovery of 91% for lanthanides and yttrium. The precipitation process from the leach liquor removed about 75% of interfering ions. Then, the raffinate and synthetic nitrate solutions were submitted to the extraction process. The main parameters of the extraction process were the extractant concentration, HNO3 concentration, temperature, contact time, and Vorg./Vaq.. After determination of the optimum condition of the extraction of lanthanides and yttrium, the extraction was performed using leach liquor solution, which resulted in the recovery of 97.65%, 97.82%, 98.12%, 95.82%, and 96.34% for La, Ce, Y, Er, and Er, respectively. Selective strippings of lanthanides and yttrium from the loaded organic phase were studied using nitric acid. The main variable for stripping process were the stripping agent concentration and the contact time between the loaded organic and aqueous phases. Under the determined optimum conditions, a one step stripping of the loaded organic phase, stripped 97.12%, 96.48%, 97.25%, 98.31%, and 97.12% of La, Ce, Y, Er, and Eu, respectively. The synergistic D2EHPA-TBP mixture increased the extraction efficiency by 3%.
 
 

کلیدواژه‌ها [English]

  • Lanthanids
  • Yttrium
  • Single super phosphate fertilizer
  • Solvent extraction
  • Synergism

[1] K.M. Franken, A roast-leach process for extraction of rare earth from complex monazite- xenotime concentrates, Sep. Sci. and Tech., 30 (1995) 1941-1949.

[2] Karl A Gschneidner, Rare earths; the fraternal fifteen, U.S. Atomic Energy commission Division of Technical Information, (1964) 1-42.

[3] A. Bagherieh, Determination of Rare Earth Elements in Products of Chadormalu Iron Ore Concentrator Plant, Master Degree Thesis, Islamic Azad University, Science and Research Branch-Tehran, (2006) 17-57.

[4] S. Radhika, B. Nagaphani Kumar, M. Lakshmi Kantam, B. Ramachandra Reddy, solvent extraction and separation of rare earts from phosphoric acid solutions with TOPS 99, Hydrometallurgy, 110 (2011) 50-55.

[5] Danilo Fontana, Loris Pietrelli, Separation of middle rare earths by solvent extraction using 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant, Journal of Rare Earths, 27 (2009) 830-833.

[6] H. Li, F. Guo, Z. Zhang, D. Li, Z. Wang, A new hydrometallurgical process for extracting rare earths from apatite using solvent extraction with P350, J. of Alloys and Compounds, 408- 412 (2006) 995-998.

[7] R. Chi, X. Zhang, G. Zhu, Z.A. Zhou, W. Wu, C. Wang, F. Yu, Recovery of rare earth from bastnasite by ammonium chloride roasting with fluorine desactivation, Minerals Engineering, 17 (2004) 1037-1043.

[8] A. Bhattacharyya, P.K. Mohapatra, S.A. Ansari, D.R. Raut, V.K. Manchanda, Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier, Journal of Membrane Science, 312 (2008) 1-5.

[9] S. Inoue, Q. Zhang, M. Uto, Solvent extraction of lanthanides(III) with N-p-Phenylbenzoyl-N-phenylhydroxylamine, Solvent Extraction and Ion Exchange, 22 (2004) 121-133.

[10] W. Li, X. Wang, H. Zhang, S. Meng, D. Li, Solvent extraction of lanthanides and yttrium from nitrate medium with Cyanex 925 in heptane, Journal of Chemical Technology & Biotechnology, 82 (2007) 376-381.

[11] B.S. Shaibu, M.L.P. Reddy, A. Bhattacharyya, V.K. Manchanda, Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams, Journal of Magnetism and Magnetic Materials, 301 (2006) 312-318.

[12] K. Shimojo, Solvent extraction of lanthanides into an ionic liquid containing N, N, N0, N0-Tetrakis (2-pyridylmethyl) ethylenediamine, Chemistry Letters, 35 (2006) 484-485.

[13] J.I. Skorovarov, V.D. Kosynkin, S.D. Moiseev, N.N. Rura, Recovery of rare earth elements from phosphorites in the USSR, Journal of Alloys and Compounds, 180 (1992) 71-76.

[14] M. Krea, H. Khalaf, Liquid-liquid extraction of uranium and lanthanides from phosphoric acid using a synergitic DOPPA-TOPO mixture, Hydrometallurgy, 58 (2000) 215-225.

[15] N. Lounamaa, T. Mattila, V.P. Judin, H.E. Sund, Recovery of Rare Earths from Phosphorus Rock by Solvent Extraction. In: Proc. Second Int. Congress Phosphorus Compounds, Institute Mondial du Phosphate, Paris, (1980) 759-768.

[16] Liangshi Wang, Zhiqi Long, Xiaowei Huang, Ying Yu, Dali Cui, Guocheng Zhang, Rcovery of rare earths from wet-process phosphoric acid, Hydrometallurgy, 101 (2010) 41-47.

[17] S.A. Milani, E. Farahmand, B. Maraghe-Mianji, Recovery of Rare Earth Elements from Leach Liquor of Apatite Concentrate of Central Iran Using Combined Precipitation and Solvent Extraction Methods, Journal of Nuclear Science and Technology, 64 (2013) 56-66.

[18] A.R. Khanchi, H. Rafati, M.R. Rezvanyanzadeh, Recovery of some rare earth elements from leach liquor of the saghand uranium ore using combined precipitation and cation exchange methods, J. of Nuclear Sci. and Tech., 44 (2008) 1-8.
[19] V. Jedináková, P. Vaňura, J. Žilková, V. Bílek, F. Touati, Extraction of micro- and macro-concentrations of rare earth ions with the mixture of D2EHPA and TBP in n-hexane and cyclohexane, J. Radioanal. Nucl. Chem, 162 (1992) 267-276.

[20] N.E. El-Hefny, Y.A. El-Nadi, I.M. Ahmed, 18-Crown-6 for the selective extraction and separation of cerium(IV) from nitrate medium containing some lanthanides, International Journal of Mineral Processing, 101 (2011) 58-62.

[21] O.A.E.N. Desouky, Liquid-Liquid Extraction of Rare Earth Elements From Sulfuric Acid Solutions, Ph.D. thesis, University of Leeds, United Kingdom, (2006) 30-107.

[22] Harvinderpal Singh, R. Vijayalakshmi, S.L. Mishrs, C.K. Gupta, Studies on uranium extraction from phosphoric acid using di-nonyl, Hydrometallurgy, 59 (2001) 69-76.

[23] E.K. Alamdari, D. Darvishi, S.K. Sadrnezhaad, Z.M. Shabestari, A. O'hadizadeh, M. Akbari, Effect of TBP as a modifier for extraction of zinc and cadmium with a mixture of DEHPA and MEHPA, Proc. Int. Conf. Solvent Extraction Conference, S. Afr. Inst. Min & Metall., Johannesburg, (2002) 1052-1057.

[24] D. Haghshenas Fatmehsari, D. Darvishi, S. Etemadi, A.R. Eivazi Hollagh, E. Keshavarz Alamdari, A.A. Salardini, Interaction between TBP and D2EHPA during Zn, Cd, Mn, Cu, Co and Ni solvent extraction: A thermodynamic and empirical approach. J. Hydrometallurgy, 98 (2009) 143-147.