جداسازی و انتقال انتخابی زیرکنیم (IV) و نیوبیم (V) از محیط هیدروکلریک اسید از طریق غشای مایع توده‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

چکیده

(با عرض پوزش به علت اشکال پیش آمده در فرمول نویسی، اصل چکیده را از فایل pDF مقاله مطالعه فرمایید)
جداسازی زیرکنیم و نیوبیم از لانتانیدها در محیط هیدروکلریک اسید و انتقال انتخابی آن‌ها از طریق غشای مایع توده‌ای مورد بررسی آزمایشگاهی قرار گرفت. تری‌بوتیل فسفات (TBP)، تری- ان- اکتیل آمین (TNOA)  و دی بنزو-18- کراون- 6 (؟) رقیق شده در کروزن و بنزن به عنوان حامل به کار گرفته شدند. اثرات عامل‌های مختلف مانند غلظت هیدروکلریک اسید در محلول‌های خوراک و بازیابی (عریان‌ساز)، نوع و غلظت حامل (TNOA، TBP و ?) در فاز غشا، بر روی فرایندهای جداسازی و انتقال زیرکنیم (IV) و نیوبیم (V) مورد بررسی قرار گرفتند. استخراج زیرکنیم (IV) و نیوبیم‌ (V) از محلول هیدروکلریک اسید 9 مولار به درون فاز غشاء با باقی گذاشتن لانتانیدها در محلول خوراک به وسیله‌ی تری‌بوتیل فسفات (TBP) %30 حجمی در کروزن فراهم شد. هیدروکلریک اسید 0.5 مولار، بازیابی کمٌی زیرکنیم (IV) و نیوبیم (V) را فراهم نمود. به علاوه، مطالعه‌ی سینتیک انتقال نشان داد که روند انتقال نیوبیم (V)، سینتیک کمی سریع‌تر از سینتیک زیرکنیم (IV) ارایه می‌دهد. سینتیک انتقال زیرکنیم (IV) و نیوبیم (V) با فرض یک واکنش متوالی مرتبه‌ی دوم برگشت‌ناپذیر مورد بررسی قرار گرفت. مشخص شد که ثابت سرعت انتقال نیوبیم (V) از فاز دهنده به فاز غشا و از غشا به فاز پذیرنده، به ترتیب، حدود 98 و 24 درصد بزرگ‌تر از ثابت سرعت انتقال زیرکنیم (IV) است.

کلیدواژه‌ها


عنوان مقاله [English]

Separation and Selective Transport of Zirconium (IV) and Niobium (V) from Hydrochloric Media Through a Bulk Liquid Membrane

نویسندگان [English]

  • S A. Milani
  • A Charkhi
  • S Eshghi
Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI
چکیده [English]

The separation of zirconium and niobium from lanthanides in hydrochloric medium and the selective transport of them via bulk liquid membrane (BLM) was examined. Tri-n-butyl phosphate (TBP), tri-n-octylamine (TNOA) and dibenzo-18-crown-6 (DBC 6) diluted in kerosene and benzene were used as a carrier. The various effects on the transport and separation of zirconium (IV) and niobium (V) were studied: concentration of  hydrochloric acid in the feed and strip solutions, type and concentration of  the carrier (TBP, TNOA, DBC 6) in the membrane phase. The extraction of zirconium (IV) and niobium (V) in the membrane phase from 9.0 M hydrochloric acid by 30% (v/v) TBP was achieved by leaving lanthanides in the feed solution. The quantitative recovery of zirconium (IV) and niobium (V) were achieved by 0.5 M HCl. Furthermore, the transport  kinetics study showed that niobium transport process exhibits slightly faster kinetics than zirconium.The kinetics of Zr(IV)/Nb(V) transport were investigated assuming a consecutive, irreversible second-order reaction on the interfaces. It was found that the rate constant of  niobium (V) transport from the donor phase-to-the membrane and from the membrane to the acceptor  phase was, respectively, about 98 and 24% more than the zirconium (IV) transport rate constant.

کلیدواژه‌ها [English]

  • Separation
  • Selective transport
  • Bulk liquid membrane (BLM)
  • Hydrochloric medium
  • TBP
  • TNOA
  • 18-DBC- 6
  • Niobium
  • Zirconium
  • Kinetics

[1] F. Ullman, Ullmann'S Encyclopedia of Industrial Chemistry, 6th Edition, 39, VCH (2003) 697-721.

 [2] E. Hillner, Corrosion of Zirconium-Base Alloys-An Overview. Zirconium in the Nuclear Industry: Proceedings of the Third International Conference, (1977) 211–235.

 [3] Zirconium: Physico-chemical Properties of Its Compounds and Alloys. International Atomic Energy Agency, (6) 1976-Zirconium-268 pages.

 [4] W.W. Schulz, J.D. Navratil, Science and technology of tributyle phosphate (1987).

 [5] M. Fuerhacker, T.M. Haile, D. Kogelnig, A. Stojanovic, B. Keppler, Application of ionic liquids for the removal of  heavy metals from wastewater and activated sludge, Water Sci Technol., 65 (2012) 1765-73.

 [6] R.O. Abdel Rahman, H.A. Ibrahium, Yung-Tse Hung, Liquid Radioactive Wastes Treatment: A Review, Water, 3 (2011) 551-565.

 [7] S.K. Singh, S.K. Misra, M. Sudersanan, A. Dakshinamoorthy, S.K. Munshi, P.K. Dey, Carrier-mediated transport of uranium from phosphoric acid medium across TOPO/n-dodecane-supported liquid membrane, Hydrometallurgy, 87 (2007) 190–196.

 [8] Shipra, Selective Transport of Ag(I) Ion Using Polymer, Inclusion Membranes Containing Thiuram Sulphide as a. Carrier, M.S. Thesis, School of chemistry and biochemistry, Thapar university, Patiala (2009) 1-7.

 [9] M.R. Yaftian, A.A. Zamani, S. Rostamnia, Thorium (IV) ion-selective transport through a bulk liquid membrane containing 2-thenoyltrifluoroacetone as extractant-carrier, Separation and Purification Technology, 49 (2006) 71–75.

 [10]      R.D. Noble, S.A. Stern, Membrane separations technology: principles and applications, 2, Elsevier (1995).

 [11]      S.K. Kumar, To Study Selective Transport of Ag (I) Ion Using Polymer Inclusion Membranes Containing Thiuram Sulphide as a Carrier. Diss. Thesis. Thapar University, Patiala, (2009).

[12]      S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane, Advances in Chemistry Series, 38 (1962) 117.

 [13]      M.E. Campderro´s, J. Marchese, Transport of niobium(V) through a TBP–Alamine 336 supported liquid membrane from chloride solutions, Hydrometallurgy, 61 (­2001) 89–95.

 [14]      X.J. Yang, A.G. Fane, C. Pin, Separation of zirconium and hafnium using hollow fibers Part I. Supported liquid membranes, Chemical Engineering Journal, 88 (2002) 37–44.

 [15]      M. E. Campderrós, J. Marchese, Facilitated transport of niobium(V) and tantalum (V) with supported liquid membrane using TBP as carrier, Journal of Membrane Science, 164 (2000) 205–210.

 [16]      D. Buachuang, P. Ramakul, N. Leepipatpiboon, U. Pancharoen, Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane, Journal of Alloys and Compounds, 509 (2011) 9549–9557.

 [17]      M. Eskandari Nasab, A. Sam, S.A. Milani, Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction, Hydro-metallurgy, 106 (3–4) (2011) 141–147.

 [18]      G. Yagodin, O. Sinegribova, Processes for zirconium-hafnium and niobium-tantalum, Handbook of solvent extraction, 25 (1983) 812.

 [19]      N.V. Deorkar, S.M. Khopkar, Separation of Niobium From Chloride Media by Solvent Extraction With Dicyclohexyl-18-crown-6, ANALYST, 116, SEPTEMBER (1991).

 [20]      R. Banda, Man Seung Lee, Solvent Extraction for the Separation of Zr and Hf from Aqueous Solutions, Separation & Purification Reviews, 44 (2015) 199–215.

 [21]      M. Ma­, D. He­, Q. Wang, Q. Xie, Kinetics of europium(III) transport through a liquid membrane containing HEH(EHP) in kerosene, Talanta,  55(6) (2001) 1109-1117.

[22]      D. He, M. Ma, Kinetics of Cadmium(II) Transport through a Liquid Membrane Containing Tricapryl Amine in Xylene, Separation Science and Technology, 35(10) (2000) 1573-1585.

 [23]      D. He, M. Ma, Z. Zhao, Transport of cadmium ions through a liquid membrane containing amine extractants as carriers, Journal of Membrane Science, 169(1) (2000) 53–59.

 [24]      W. Zhang, J. Liu, Z. Ren, S. Wang, C. Du, J. Ma, Kinetic study of chromium(VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier, Chemical Engineering Journal, 150(1) (2009) 83–89.

 [25]      A. Yilmaz, A. Kaya, H.­K. AlpoguzM. Ersoz­, M. Yilmaz, Kinetic analysis of chromium(VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix [4] arene dioxaoctylamide derivative, Separation and Purification Technology, 59 (1) (2008) 1–8.

 [26]      A.Ö. Saf, S. Alpaydin, A. Sirit, Transport kinetics of chromium(VI) ions through a bulk liquid membrane containing p-tert-butyl calix[4]arene 3-morpholino propyl diamide derivative, Journal of Membrane Science, 283(1–2) (2006) 448–455.

 [27]      H. Gubbuk, O. Gungor, H. Korkmaz Alpoguz, M. Ersoz, M. Yılmaz, Kinetic study of mercury (II) transport through a liquid membrane containing calix[4]arene nitrile derivatives as a carrier in chloroform, Desalination, 261 (2010) 157–161.