تولید جریان‌های غیرخطی و موج‌های هلیکون در یک پلاسمای کوانتومی نیم‌رسانا

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه فیریک، دانشکده‌ی علوم پایه، دانشگاه بین‌المللی امام خمینی (ره)، قزوین ـ ایران

چکیده

در این مقاله، به شیوهای تحلیلی چگونگی برانگیزش چگالی جریان‌های غیرخطی و موج‌های هلیکون ناشی از برهم‌کنش پرتوهای الکترومغناطیسی پمپ شده به یک پلاسمای کوانتومی نیم‌رسانا مورد بررسی قرار می‌گیرد. بدین منظور، مدل سیالی تعمیم‌یافته‌ای برای به دست آوردن پاسخ غیرخطی الکترون‌های محیط در حضور میدان مغناطیسی خارجی به کار گرفته می‌شود. نشان داده می‌شود که در نتیجه‌ی برهم‌کنش دو موج الکترومغناطیس، یک نیروی پاندرماتیو در محیط نیم‌رسانا ایجاد شده و باعث برانگیزش یک موج هلیکون می‌شود. علاوه براین، چگالی توان موج هلیکون برانگیخته شده محاسبه شده و نسبت به پارامترهای مختلف محیط پلاسمای حالت جامد مورد ارزیابی قرار می‌گیرد. هم‌چنین با تحلیل نموداری نشان داده می‌شود که چگالی توان موج برانگیخته با افزایش میدان مغناطیسی خارجی و چگالی تعادلی الکترون‌ها افزایش و با افزایش بسامد برخورد الکترون- فونون کاهش می‌یابد.

تازه های تحقیق

[1] P.K. Gupta, P.K. Sen, The role of electrostriction on parametric dispersion and amplification in doped piezoelectric semi-conductors, Nonlinear Optics-Reading, 26, 4 (2001) 361-377.

 [2] S. Ghosh, G.R. Sharma, P. Khare, M. Salimullah, Modified interactions of longitudinal phonon–plasmon in magnetized piezoelectric semiconductor plasmas, Physica B: Condensed Matter, 351, 1 (2004) 163-170.

 [3] S. Ghosh, G. Sharma, M. Salimullah, Dispersion and absorption of Alfven wave in ion-implanted group-IV semiconductor, Physica B: Condensed Matter, 355, 1 (2005) 37-43.

 [4] G. Sharma, S. Ghosh, Optical parameters of a magnetized space-charge neutral group IV semiconductor, Journal of Applied Physics, 91, 8 (2002) 4910-4916.

 [5] G. Sharma, S. Ghosh, Optical parameters of a magnetized semiconductor plasma with nonparabolic band structure, Journal of Applied Physics, 89, 9 (2001) 4741-4746.

 [6] R.W. Boswell, Very efficient plasma generation by whistler waves near the lower hybrid frequency, Plasma Physics and Controlled Fusion, 26, 10 (1984) 1147.

 [7] F.F. Chen, Experiments on helicon plasma sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10, 4 (1992) 1389-1401.

 [8] R.W. Boswell, F.F. Chen, Helicons-the early years, IEEE Transactions on Plasma Science, 25, 6 (1997) 1229-1244.

 [9] P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag Wien New York (1990).

 [10] Y.D. Jung, Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas, Physics of Plasmas, 8, 8 (2001) 3842-3844.

 [11] G.V. Shpatakovskaya, Semiclassical model of a one-dimensional quantum dot, Journal of Experimental and Theoretical Physics, 102, 3 (2006) 466-474.

 [12] L. Wei, Y.N. Wang, Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Physical Review B., 75, 19 (2007) 193407.

 [13] K. Becker, A. Koutsospyros, S.M. Yin, C. Christodoulatos, N. Abramzon, J.C. Joaquin, G. Brelles-Marino, Environmental and biological applications of microplasmas, Plasma physics and controlled fusion, 47, 12B (2005) B513.

 [14] M. Opher, L.O. Silva, D.E. Dauger, V.K Decyk, J.M. Dawson, Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasmas, 8, 5 (2001) 2454-2460.

 [15] A. Mehramiz, J. Mahmoodi, S. Sobhanian, Approximation method for a spherical bound system in the quantum plasma, Physics of Plasmas, 17, 8 (2010) 082110.

 [16] I. Zeba, C. Uzma, M. Jamil, M. Salimullah, P.K. Shukla, Colloidal crystal formation in a semiconductor quantum plasma, Physics of Plasmas, 17, 3 (2010) 032105.

 [17] A. Muley, S. Ghosh, Effect of quantum parameter–H on longitudinal electro–kinetic wave characteristic in magnetized semi-conductor plasma, International journal of engineering sciences & research., 4, 2 (2015) 88-95.

 [18] S. Ghosh, A. Muley, Novel modes of longitudinal electrokinetic waves in semi-conductor quantum plasmas, Journal of Physics and Chemistry of Materials., (2014) 1-7.

 [19] K.P. Maheshwari, G. Tarey, Resonant excitation of helicon waves by two microwave beams in a solid state plasma, physica status solidi (b), 133, 1 (1986) 417-423‏.

 [20] M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self Focusing of Laser Beams, New Delhi, Tata McGraw-Hill Publ. Co. (1974) .

 [21] A. F. Aleksandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of plasma electro-dynamics, Moscow Izdatel Vysshaia Shkola.‏ (1978).

 [22] V.L. Ginzburg, Propagation of Electro-magnetic Waves in Plasma, New York, Gordon & Breach. (1960).

 [23] A.A. Mamun, M.N. Alam, Excitation of Alfven waves at the difference frequency of two microwave beams in a highly collisional magnetoactive compensated semiconductor, Physical Review B,‏ 45, 11 (1992) 5868.

کلیدواژه‌ها


عنوان مقاله [English]

Generation of Nonlinear Currents and Helicon Waves in a Semiconductor Quantum Plasma

نویسندگان [English]

  • A Mehramiz
  • B Rajabi
Physics Department, Factually of Science, Imam Khomeini International University Qazvin – Iran
چکیده [English]

In this paper, an analytical investigation has been presented on the excitation of nonlinear current densities and helicon waves resulting from the interaction of the electromagnetic pump waves in a semiconductor quantum plasma. For this parpose, a system of modified fluid equations has been used to find the nonlinear response of electrons in the semiconductor in the presence of an external magnetic field. It is shown that due to the interaction of two electromagnetic pump waves in the semiconductor medium, a pondermotive force at the beating frequency becomes finite and generates a helicon wave. Furthermore, the power carried by the excited helicon wave is calculated and evaluated relative to the typical parameters of a solid state plasma medium. The results indicate that the power of the excited wave gradually increases with the external magnetic field, as well as, the equilibrium density of the carriers, and decreases by the electron-phonon collision frequency.
 

کلیدواژه‌ها [English]

  • Nonlinear Currents
  • Semiconductor Plasma
  • Helicon Wave

[1] P.K. Gupta, P.K. Sen, The role of electrostriction on parametric dispersion and amplification in doped piezoelectric semi-conductors, Nonlinear Optics-Reading, 26, 4 (2001) 361-377.

 [2] S. Ghosh, G.R. Sharma, P. Khare, M. Salimullah, Modified interactions of longitudinal phonon–plasmon in magnetized piezoelectric semiconductor plasmas, Physica B: Condensed Matter, 351, 1 (2004) 163-170.

 [3] S. Ghosh, G. Sharma, M. Salimullah, Dispersion and absorption of Alfven wave in ion-implanted group-IV semiconductor, Physica B: Condensed Matter, 355, 1 (2005) 37-43.

 [4] G. Sharma, S. Ghosh, Optical parameters of a magnetized space-charge neutral group IV semiconductor, Journal of Applied Physics, 91, 8 (2002) 4910-4916.

 [5] G. Sharma, S. Ghosh, Optical parameters of a magnetized semiconductor plasma with nonparabolic band structure, Journal of Applied Physics, 89, 9 (2001) 4741-4746.

 [6] R.W. Boswell, Very efficient plasma generation by whistler waves near the lower hybrid frequency, Plasma Physics and Controlled Fusion, 26, 10 (1984) 1147.

 [7] F.F. Chen, Experiments on helicon plasma sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10, 4 (1992) 1389-1401.

 [8] R.W. Boswell, F.F. Chen, Helicons-the early years, IEEE Transactions on Plasma Science, 25, 6 (1997) 1229-1244.

 [9] P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag Wien New York (1990).

 [10] Y.D. Jung, Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas, Physics of Plasmas, 8, 8 (2001) 3842-3844.

 [11] G.V. Shpatakovskaya, Semiclassical model of a one-dimensional quantum dot, Journal of Experimental and Theoretical Physics, 102, 3 (2006) 466-474.

 [12] L. Wei, Y.N. Wang, Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Physical Review B., 75, 19 (2007) 193407.

 [13] K. Becker, A. Koutsospyros, S.M. Yin, C. Christodoulatos, N. Abramzon, J.C. Joaquin, G. Brelles-Marino, Environmental and biological applications of microplasmas, Plasma physics and controlled fusion, 47, 12B (2005) B513.

 [14] M. Opher, L.O. Silva, D.E. Dauger, V.K Decyk, J.M. Dawson, Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasmas, 8, 5 (2001) 2454-2460.

 [15] A. Mehramiz, J. Mahmoodi, S. Sobhanian, Approximation method for a spherical bound system in the quantum plasma, Physics of Plasmas, 17, 8 (2010) 082110.

 [16] I. Zeba, C. Uzma, M. Jamil, M. Salimullah, P.K. Shukla, Colloidal crystal formation in a semiconductor quantum plasma, Physics of Plasmas, 17, 3 (2010) 032105.

 [17] A. Muley, S. Ghosh, Effect of quantum parameter–H on longitudinal electro–kinetic wave characteristic in magnetized semi-conductor plasma, International journal of engineering sciences & research., 4, 2 (2015) 88-95.

 [18] S. Ghosh, A. Muley, Novel modes of longitudinal electrokinetic waves in semi-conductor quantum plasmas, Journal of Physics and Chemistry of Materials., (2014) 1-7.

 [19] K.P. Maheshwari, G. Tarey, Resonant excitation of helicon waves by two microwave beams in a solid state plasma, physica status solidi (b), 133, 1 (1986) 417-423‏.

 [20] M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self Focusing of Laser Beams, New Delhi, Tata McGraw-Hill Publ. Co. (1974) .

 [21] A. F. Aleksandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of plasma electro-dynamics, Moscow Izdatel Vysshaia Shkola.‏ (1978).

 [22] V.L. Ginzburg, Propagation of Electro-magnetic Waves in Plasma, New York, Gordon & Breach. (1960).

 [23] A.A. Mamun, M.N. Alam, Excitation of Alfven waves at the difference frequency of two microwave beams in a highly collisional magnetoactive compensated semiconductor, Physical Review B,‏ 45, 11 (1992) 5868.