حذف کروم (VI) از محلول های آبی به وسیله ی کلینوپتیلولیت سدیمی پرتودهی شده

نویسندگان

1 گروه مهندسی هسته ای، دانشکده ی علوم و فن آوری های نوین، دانشگاه اصفهان، صندوق پستی: 73441-81746، اصفهان ـ ایران

2 دانشکده‌ی شیمی، دانشگاه آزاد اسلامی واحد شهرضا، صندوق پستی: 311-86145، شهرضا ـ ایران

3 گروه فیزیک، دانشکده‌ی علوم، دانشگاه اصفهان، صندوق پستی: 73441-81746، اصفهان ـ ایران

چکیده

اثر پرتو گاما بر ظرفیت تبادل یون کلینوپتیلولیت سدیمی بررسی شد. پرتودهی نمونه‌ی‌ جاذب با تابش گاما با دز جذب شده‌ی 70 کیلوگری تا 2 مگاگری انجام و ظرفیت جذب کروم (VI) بر روی آن، تحت شرایط مختلف و با استفاده از طیف‌سنجی جذب اتمی اندازه‌گیری شد. جذب کروم (VI) در گستره‌ی غلظتی 80 تا ppm 1800 و در pH برابر 7 انجام شد. نتایج نشان داد که تابش گاما تا دز 2 مگاگری تأثیری بر ظرفیت جذب کروم (VI) به وسیله‌ی شکل سدیمی کلینوپتیلولیت ندارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Removal of Cr (VI) from Aqueous Solution Using Irradiated Sodium-Clinoptilolite

نویسندگان [English]

  • Khadijeh Rezaee Ebrahimi Saraee 1
  • Hossein Faghihian 2
  • Mohammadreza Abdi 3
  • Hamidreza Shakor 1
  • Reza Jafari 1
چکیده [English]

Abstract: The influence of gamma ray radiation on ion-exchange capacity of sodium-clinoptilolite was studied. The absorber sample was subjected to gamma irradiation with doses of 70 to 2000 kGy. The chromium (VI) adsorption capacity of the irradiated sample was determined by the atomic adsorption spectrometry technique. The chromium (VI) adsorption was performed in the concentration range of 80 up to 1800 PPm and with a pH of 7. The results showed that the maximal radiation dose used in this research (2000 kGy) did not affect the adsorption capacity of the studied sample.
 

کلیدواژه‌ها [English]

  • Keywords: Chromium (VI) Removal
  • Irradiated Sodium-Clinoptilolite
  • Aqueous Solutions

1. E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, M. Graetzel, Sustained water cleavage by visible light, Journal of American Chemical Socity, 103 (1982) 6324–6329.

2. H. Gerischer, A. Heller, Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water, Journal of The Electrochemical Society, 139 (1992) 113-118.

3. A.J. Hoffmann, E.R. Garraway, M.R. Hoffmann, Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids, Environ. Sci. Technol. 28 (1994) 776-785.

4. E.R. Garraway, A.J. Hoffmann, M.R. Hoffmann, Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environmental Science Technology Nature, 28 (1994) 786-793.

5. R. Leyva-Ramos, A. Jacobo-Azuara, P.E. Diaz-Flores, R.M. Guerrero-Coronado, J. Mendoza-Barron, M.S. Berber-Mendoza, Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330 (2008) 35-41.

6. A. Sayah Zadeh, A. Badkoubi, Removal of Cr(VI) using carbon ash and poplar wood as absorption, Journal of Engineering and Technology of Modares, 15 (1383) 15-26.

7. M. Noroozifar, M. Khorasani-Motlagh, M.N. Gorgij, H.R. Naderpour, Adsorption behavior of Cr(VI) on modified natural zeolite by a new bolaform N,N,N,N,N,N-hexamethyl-1,9-non-anediammonium dibromide reagent, Journal of Hazardous Material, 155 (2008) 566–571.

8. M.V. Mier, R.L. Callejas, R. Gehr, B.J. Cisneros, P.J. Alvarez, Heavy Metal Removal With Mexican Clinoptilolite: Multi-Component Ionic Exchange, Water Research, 35 (2001) 373-378.

9. Z. Nazem, P. Tohfi, Sh. Haj Rasoliha, H. Tabatabaei, The effect of natural clinoptilolite on salt reduction in leachate organic fertilizer factory, Iranian Journal of Water, 1 (1386) 43-53.

10. Z. Cai, R.G. Reddy, Removal of Radio-nuclides Using Zeolites, Light Metals, ed. by W. Hale, TMS, Warrendale, USA, (1996) 1173-1180.

11. E.H. Borai, R. Harjula, L. Malinen, A.J. Paajanen, Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, Journal of Hazardous Material, 172 (2009) 416-422.

12. N.V. Elizondo, E. Ballesteros, B.I. Kharisov, Cleaning of liquid radioactive wastes using natural zeolites, Applied Radiation and Isotopes, 52 (2000) 27-30.

13. P. Sharma, G. Singh, R. Tomar, Synthesis and characterization of an analogue of heulandite: Sorption applications for thorium(IV), europium(III), samarium(II) and iron(III) recovery from aqueous waste, Journal of Colloid and Interface Science, 332 (2009) 298-308.

14. S. Khaodhar, M.F. Azizian, K. Osathaphan, Copper, Chromium, and Arsenic adsorption and equilibrium modeling in an Iron-Oxide-Coated Sand, background electrolyte system, Journal of Water, Air, and Soil Pollution, 119 (2000) 105-120.

15. M.K. Ghosh, J. Poinern, G.E., Issa, T.B.P. Singh, P. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method, Korean Journal of Chemical Engineering, 29 (2012) 95-102.

16. E. Matei, A. Predescu, E. Vasile, A. Predescu, Properties of magnetic iron oxides used as materials wastewater treatment, International Conference on Safe Production and Use of Nanomaterials, Minatec, France, Journal of Physics: Conference Series, 304 (2010).

17. A.M. Yousof, Removal of Cr(VI) and As(V) from aqueus solutions by HDTMA- modified zeolite Y. Journal of Hazardous Materials, (2009) 1019-1024.

18. Y. Khazaei, H. Faghihian, M. Kamali, Removal of thorium from aqueous solutions by sodium clinoptilolite, Journal of Radioanalytical and Nuclear Chemistry, 289 (2011) 529-536.