مقایسه‌ی تأثیر دز جذبی در دو شیوه‌ی پرتودرمانی خارجی و هدفمند بر عود دوباره‌ی تومور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 گروه فیزیک هسته‌ای، دانشکده‌ی فیزیک، دانشگاه دامغان، صندوق پستی: 41167-36716، دامغان ـ ایران

چکیده

زمانی­که اندازه­ی تومور در مقایسه با برد ذره­های یوننده، بزرگ باشد بیش­تر انرژی ذره­ها در آن جذب می­شود و اگر کوچک­تر باشد مقدار زیادی از انرژی ذره­ها خارج خواهد شد. بنابراین اندازه­ی تومور و برد ذره­های یوننده نقش مهمی در عود دوباره­ی تومور خواهند داشت. هدف این پژوهش بررسی ارتباط احتمال عود دوباره­ی تومور با اندازه­ی تومور و انرژی ذره­ها در پرتودرمانی خارجی و هدفمند است. کسر دز جذبی برای کره­هایی به شعاع µm 20 تا cm 4.5 با استفاده از کد MCNPX محاسبه شد. به منظور بررسی رابطه­ی بین عود دوباره­ی تومور و اندازه­ی تومور درمان شده با پرتودرمانی خارجی و هدفمند با ید-131 و ایتریم-90، از یک مدل ریاضی مبتنی بر آمار پواسون استفاده شد. تحلیل­ها نشان داد که احتمال عود دوباره برای پرتودرمانی با ایتریم-90 برای تومورهای به قطر تقریباً cm 3.5 کمینه است در حالی­که برای پرتودرمانی با ید-131 این احتمال برای تومورهای به قطر تقریباً mm 3.5 کمینه است. از یافته­ها می­توان نتیجه گرفت که پرتودرمانی هدفمند با یک تک- رادیونوکلید نباید برای بیماران سرطانی دارای متاستازهای با اندازه­های مختلف و یا سرطان­های گسترش­یافته مورد استفاده قرار گیرد. استفاده از چند رادیونوکلید به طور هم­زمان یا ترکیب پرتودرمانی هدفمند با پرتودرمانی خارجی، می­تواند اثربخشی بیش­تری نسبت به استفاده از یک تک­ رادیونوکلید داشته باشد.

تازه های تحقیق

[1] J. Deacon, M.J. Peckham, G.G. Steel, The radioresponsiveness of human tumor and the initial slope of the cell survival curve, Radiotherapy and Oncology 2, 4 (1984) 317-323.

 [2] R.K. Hobbie, B.J. Roth, Intermediate Physics for Medicine and Biology, 4th ed., New York: Springer Science & Business Media., (2007) 492-4.

 [3] H. Ranjbar, A. Bahrami-Samani, M.R. Yazdani, M. Ghannadi-Maragheh, Determination of human absorbed dose of cocktail of 153Sm/177Lu-EDTMP, based on biodistribution data in rats, Journal of Radioanalytical and Nuclear Chemistry, 307, 2 (2016) 1439-1444.

 [4] H. Ranjbar, M. Shamsaei, M.R. Ghasemi, Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles, Nukleonika, 55 (2010) 307-312.

 [5] L.F. Mausner, S.C. Srivastava, Selection of radionuclides for radioimmunotherapy, Medical physics., 20, 2 (1993) 503-509.

 [6] J. Zhang, H. Hu, S. Liang, J. Yin, X. Hui, S. Hu, M. He, J. Wang, B. Wang, Y. Nie, K. Wu, Targeted radiotherapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer, Journal of controlled release., 172, 1 (2013) 322-329.

 7. H. Ranjbar, M. Ghannadi-Maragheh, A. Bahrami-Samani, D. Beiki, Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half life of radionuclides, Radiation Physics and Chemistry, 108 (2015) 60-64.

 [8] H. Ranjbar, A. Bahrami-Samani, D. Beiki, S. Shirvani-Arani, M. Ghannadi-Maragheh, Evaluation of 153Sm/177Lu-EDTMP mixture in wild-type rodents as a novel combined palliative treatment of bone pain agent, Journal of Radioanalytical and Nuclear Chemistry, 303, 1 (2015) 71-79.

 [9] A. Lechner, M. Blaickner, S. Gianolini, K. Poljanc, H. Aiginger, D. Georg, Targeted radionuclide therapy: theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail, Physics in Medicine and Biology, 53 (2008) 1961.

 [10] S. Walrand, F.X. Hanin, S. Pauwels, F. Jamar, Tumour control probability derived from dose distribution in homogeneous and heterogeneous models: assuming similar pharmacokinetics, 125Sn–177Lu is superior to 90Y–177Lu in peptide receptor radiotherapy, Physics in Medicine & Biology, 57, 13 (2012) 4263.

 [11] M. Tesson, R. Mairs, K. Maresca, J. Joyal, B. John, Enhancement of prostate-targeted radiotherapy using [131I] MIP-1095 in combination with radiosensitizing chemotherapeutic drugs, Journal of Nuclear Medicine, 54, 2 (2013) 119-119.

 12. J.S. Wilson, J.E. Gains, V. Moroz, K. Wheatley, A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma, European journal of cancer., 50,  4 (2014) 801-815.

 [13] KCJM Kraal, EC Van Dalen, GAM Tytgat, BL Van Eck‐Smit, HN Caron, Iodine-131-meta-iodobenzylguanidine therapy for patients with high-risk neuroblastoma, Cochrane Database of Systematic Reviews., 2 (2013).

 [14] S. Mittal, M. Bhadwal, T. Das, H.D. Sarma, R. Chakravarty, Synthesis and Biological Evaluation of 90Y-Labeled Porphyrin-DOTA Conjugate: A Potential Molecule for Targeted Tumor Therapy, Cancer Biotherapy and Radiopharmaceuticals, 28, 9 (2013) 651-656.

[15] L. Bodei, M. Cremonesi, G. Paganelli, Yttrium-Based Therapy for Neuroendocrine Tumors. PET clinics 9, 1 (2014) 71-82.

 [16] S.A. Gulec, T.C. Barot, Y-90 Radiomicrosphere Therapy of Colorectal Cancer: Liver Metastases. In Image-Guided Cancer Therapy, Springer, New York, NY, (2013) 441-454.

 [17] K. Scheidhauer, I. Wolf, H.J. Baumgartl, C. Von Schilling, B. Schmidt, G. Reidel, C. Peschel, M. Schwaiger, Biodistribution and kinetics of 131I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin’s lymphoma, European journal of nuclear medicine and molecular imaging, 29, 10 (2002) 1276-1282.

 [18] G.W. Kang, H.J. Kang, D.Y. Shin, H.R. Gu, H.S. Choi, S.M. Lim, Radioimmunotherapy with 131I-Rituximab in a Patient with Diffuse Large B-Cell Lymphoma Relapsed After Treatment with 90Y-Ibritumomab Tiuxetan, Nuclear medicine and molecular imaging, 47, 4 (2013) 281-284.

 [19] C. Vaklavas, R.F. Meredith, S. Shen, S.J. Knox, I.N. Micallef, J.J. Shah, A.F. LoBuglio, A. Forero-Torres, Phase I Study of a Modified Regimen of 90Yttrium–Ibritumomab Tiuxetan for Relapsed or Refractory Follicular or Transformed CD20+Non-Hodgkin Lymphoma. Cancer Biotherapy and Radiopharmaceuticals, 28, 5 (2013) 370-379.

 [20] EH. Porter, The statistics of dose-cure relationships for irradiated tumours, The British journal of radiology, 53, 627 (1980) 210-227.

 [21] J. Deacon, M.J. Peckham, G.C. Steel, The radioresponsiveness of human tumor and the initial slope of the cell survival curve, Radiotherapy and Oncology, 2, 4 (1984) 317-323.

 [22] B. Fertil, E.P. Malaise, Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves, International Journal of Radiation Oncology Biology Physics, 11, 9 (1985) 1699-1707.

 [23] ICRU. Photon, electron, proton and neutron interaction data for body tissues, ICRU Report, 46, Bethesda, MD:ICRU; (1992).

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the Effect of Absorbed Dose on Recurrence of Tumors in External Beam Radiation and Targeted Therapy

نویسندگان [English]

  • H Ranjbar 1
  • F Faridi 2
  • M Tajik 2
چکیده [English]

Radiotherapy is the treatment of cancer using ionizing radiation. When a tumor is large in comparison to the range of the ionizing particles, most of the energy is absorbed within the tumor. In cases when the tumor dimensions are smaller than the range of ionizing particles, a large proportion of the energy can escape. Therefore, the tumor size and the range of the ionizing particles are important to be realized in the recurrence probability of tumors. The purpose of this study is to investigate the relationship of recurrence probability to tumor size and paricles energy in external radiotherapy and targeted radionuclide therapy. The absorbed fractions for spheres that ranged in radii from 20 µm to 4.5 cm were calculated using the MCNPX code. A mathematical model based on Poisson distribution was used to investigate the relationship of recurrence probability to tumor size for tumors treated with external beam radiotherapy and targeted 131I and 90Y. The results show that for targeted radionuclide therapy, the relationship between the recurrence probability and tumor size is different from that for external beam radiotherapy. The analysis shows that there is a minimum value of the recurrence probability that occures at a diameter of approximately 3.5 cm for 90Y. For 131I, the minimum recurrence occurs at a tumor diameter of approximately 3.5 mm. The results show that there is an optimal tumor size for the tumor curability. The recurrence probability has a minimum value for tumors whose diameters are close to the optimum value which depends on the particles energy. Smaller tumors are more recurrence because of the incompetent absorption of radiation energy, i.e., it dose not occure with the external beam iiradiation, and larger tumors are more recurrence because of the greater cell number. The results are shown that single agent targeted radiotherapy should not be used for treatment of disseminated cancers when multiple tumors of differing size may be present. The use of several radionuclides, including long-range and short-range beta emitters, concurrently or from combining targeted radiotherapy with external beam irradiation would be more effective than the reliance on a single radionuclide.
 
 

کلیدواژه‌ها [English]

  • Recurrence probability
  • targeted radiotherapy
  • external beam radiation
  • 131I
  • 90Y

[1] J. Deacon, M.J. Peckham, G.G. Steel, The radioresponsiveness of human tumor and the initial slope of the cell survival curve, Radiotherapy and Oncology 2, 4 (1984) 317-323.

 [2] R.K. Hobbie, B.J. Roth, Intermediate Physics for Medicine and Biology, 4th ed., New York: Springer Science & Business Media., (2007) 492-4.

 [3] H. Ranjbar, A. Bahrami-Samani, M.R. Yazdani, M. Ghannadi-Maragheh, Determination of human absorbed dose of cocktail of 153Sm/177Lu-EDTMP, based on biodistribution data in rats, Journal of Radioanalytical and Nuclear Chemistry, 307, 2 (2016) 1439-1444.

 [4] H. Ranjbar, M. Shamsaei, M.R. Ghasemi, Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles, Nukleonika, 55 (2010) 307-312.

 [5] L.F. Mausner, S.C. Srivastava, Selection of radionuclides for radioimmunotherapy, Medical physics., 20, 2 (1993) 503-509.

 [6] J. Zhang, H. Hu, S. Liang, J. Yin, X. Hui, S. Hu, M. He, J. Wang, B. Wang, Y. Nie, K. Wu, Targeted radiotherapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer, Journal of controlled release., 172, 1 (2013) 322-329.

 7. H. Ranjbar, M. Ghannadi-Maragheh, A. Bahrami-Samani, D. Beiki, Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half life of radionuclides, Radiation Physics and Chemistry, 108 (2015) 60-64.

 [8] H. Ranjbar, A. Bahrami-Samani, D. Beiki, S. Shirvani-Arani, M. Ghannadi-Maragheh, Evaluation of 153Sm/177Lu-EDTMP mixture in wild-type rodents as a novel combined palliative treatment of bone pain agent, Journal of Radioanalytical and Nuclear Chemistry, 303, 1 (2015) 71-79.

 [9] A. Lechner, M. Blaickner, S. Gianolini, K. Poljanc, H. Aiginger, D. Georg, Targeted radionuclide therapy: theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail, Physics in Medicine and Biology, 53 (2008) 1961.

 [10] S. Walrand, F.X. Hanin, S. Pauwels, F. Jamar, Tumour control probability derived from dose distribution in homogeneous and heterogeneous models: assuming similar pharmacokinetics, 125Sn–177Lu is superior to 90Y–177Lu in peptide receptor radiotherapy, Physics in Medicine & Biology, 57, 13 (2012) 4263.

 [11] M. Tesson, R. Mairs, K. Maresca, J. Joyal, B. John, Enhancement of prostate-targeted radiotherapy using [131I] MIP-1095 in combination with radiosensitizing chemotherapeutic drugs, Journal of Nuclear Medicine, 54, 2 (2013) 119-119.

 12. J.S. Wilson, J.E. Gains, V. Moroz, K. Wheatley, A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma, European journal of cancer., 50,  4 (2014) 801-815.

 [13] KCJM Kraal, EC Van Dalen, GAM Tytgat, BL Van Eck‐Smit, HN Caron, Iodine-131-meta-iodobenzylguanidine therapy for patients with high-risk neuroblastoma, Cochrane Database of Systematic Reviews., 2 (2013).

 [14] S. Mittal, M. Bhadwal, T. Das, H.D. Sarma, R. Chakravarty, Synthesis and Biological Evaluation of 90Y-Labeled Porphyrin-DOTA Conjugate: A Potential Molecule for Targeted Tumor Therapy, Cancer Biotherapy and Radiopharmaceuticals, 28, 9 (2013) 651-656.

[15] L. Bodei, M. Cremonesi, G. Paganelli, Yttrium-Based Therapy for Neuroendocrine Tumors. PET clinics 9, 1 (2014) 71-82.

 [16] S.A. Gulec, T.C. Barot, Y-90 Radiomicrosphere Therapy of Colorectal Cancer: Liver Metastases. In Image-Guided Cancer Therapy, Springer, New York, NY, (2013) 441-454.

 [17] K. Scheidhauer, I. Wolf, H.J. Baumgartl, C. Von Schilling, B. Schmidt, G. Reidel, C. Peschel, M. Schwaiger, Biodistribution and kinetics of 131I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin’s lymphoma, European journal of nuclear medicine and molecular imaging, 29, 10 (2002) 1276-1282.

 [18] G.W. Kang, H.J. Kang, D.Y. Shin, H.R. Gu, H.S. Choi, S.M. Lim, Radioimmunotherapy with 131I-Rituximab in a Patient with Diffuse Large B-Cell Lymphoma Relapsed After Treatment with 90Y-Ibritumomab Tiuxetan, Nuclear medicine and molecular imaging, 47, 4 (2013) 281-284.

 [19] C. Vaklavas, R.F. Meredith, S. Shen, S.J. Knox, I.N. Micallef, J.J. Shah, A.F. LoBuglio, A. Forero-Torres, Phase I Study of a Modified Regimen of 90Yttrium–Ibritumomab Tiuxetan for Relapsed or Refractory Follicular or Transformed CD20+Non-Hodgkin Lymphoma. Cancer Biotherapy and Radiopharmaceuticals, 28, 5 (2013) 370-379.

 [20] EH. Porter, The statistics of dose-cure relationships for irradiated tumours, The British journal of radiology, 53, 627 (1980) 210-227.

 [21] J. Deacon, M.J. Peckham, G.C. Steel, The radioresponsiveness of human tumor and the initial slope of the cell survival curve, Radiotherapy and Oncology, 2, 4 (1984) 317-323.

 [22] B. Fertil, E.P. Malaise, Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves, International Journal of Radiation Oncology Biology Physics, 11, 9 (1985) 1699-1707.

 [23] ICRU. Photon, electron, proton and neutron interaction data for body tissues, ICRU Report, 46, Bethesda, MD:ICRU; (1992).