تولید و اصلاح نانوالیاف پلی‌استایرن‌آکریلونیتریل- پلی‌کربنات و بررسی رفتار جذبی آن نسبت به اورانیم در محیط‌های آبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده‌ی مهندسی شیمی، دانشگاه صنعتی اصفهان، صندوق پستی: 83111-84156، اصفهان ـ ایران

2 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

حذف و بازیابی اورانیم از محیط­‌های آبی از دیرباز مورد توجه دانشمندان و پژوهش­گران این عرصه بوده است. در این پژوهش سعی شده است با تولید نانوجاذب نانوالیاف پلی­استایرن آکریلونیتریل و چندسازه‌ی آن با پلی­کربنات با روش نیروریسی و اصلاح شیمیایی آن­ها، امکان جداسازی اورانیم از پس‌آب‌های هسته‌­ای و دیگر محیط‌های آبی فراهم شود. اصلاح شیمیایی این نانوالیاف با تبدیل گروه‌های نیتریل به آمیدوکسیم در محلول هیدروکسیل آمین و سپس قلیایی کردن آن­‌ها در محلول سدیم‌هیدروکسید 2.5 درصد صورت پذیرفت. طیف‌بینی زیرقرمز، تبدیل
گروه­‌های نیتریل به گروه‌­های آمیدوکسیم را اثبات کرد. ظرفیت جذب بیشینه برای پلی­استایرن­آکریلونیتریل برابر با 79.8 میلی­گرم اورانیم بر گرم جاذب و برای چندسازه‌ی آن با پلی­کربنات برابر با 38.5 میلی­گرم اورانیم بر گرم جاذب به دست آمد. با بررسی اثر pH محیط مشخص شد که بهترین عملکرد جذبی در 4 pH واقع می‌شود. در نهایت واجذب اورانیم از این جاذب با محلول 1 مولار Na2CO3 و H2O2 بررسی و بهره­‌ی واجذب بیش از 90% تعیین شد.

تازه های تحقیق

[1] A.S. Nagy, L. Matel, J. Lesny, Geochemistry and Determination Possibilities of Uranium in natural Waters, Acta Technica Jaurinensis, 1, 2 (2009) 19-34.

 [2] B. Khadro, N. Jafferzic-Renult, A miniaturized system for ultratrace uranium analysis in waters, Procedia Engineering, 5 (2010) 1212-1215.

 [3] U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based bio sorbents A review, Bio resource Technology, 101 (2001) 5043–5053.

 [4] H. Yamashita, Y. Ozawa, F. Nakajima, T. Murata, The Collection of Uranium from Sea Water with Hydrous Metal Oxide. II. The Mechanism of Uranium Adsorption on Hydrous Titanium (IV) Oxide, Bull. Chem. Soc. Jpn., 53 (1980) 1-5.

 [5] H.J. Schenk, L. Astheimer, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater Assessment of key parameters and screening studies of sorber materials, Sep. Sci. Technol., 17 (1982) 1293-1308.

 [6] P.A. Kavaklı, N. Seko, M. Tamada, O. Güven, Radiation-induced graft polymerization of glycidyl methacrylate onto PE/PP nonwoven fabric and its modification toward enhanced amidoximation, J. Appl. Polym. Sci., 105 (2007) 1551-1558.

 [7] P.A. Kavaklı, N. Seko, M. Tamada, O. Güven, Adsorption Efficiency of a New Adsorbent Towards Uranium and Vanadium Ions at Low Concentrations, Sep. Sci. Tech., 39, 7 (2004) 1631–1643.

 [8] I.H. Park, J.M. Suh, Preparation and uranyl ion adsorptivity of macroreticular chelating resins containing a pair of neighboring amidoxime groups in a monomeric styrene unit, Makromol. Chem., 239 (1996) 121–132.

 [9] L. Rao, Recent International R&D activities in the extraction of uranium from seawater, Lawrence Berkeley National Laboratory, (2011) 1-20.

 [10] S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, Extracting Uranium from Seawater: Promising AI Series Adsorbents, Industrial & Engineering Chemistry Research, 55, 15 (2016) 4103–4109.

 [11] S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, Extracting Uranium from Seawater: Promising AI Series Adsorbents, Industrial & Engineering Chemistry Research, 55, 15 (2016) 4110–4117.

 [12] N. Horzum, T. Shahwan, O. Parlak, M. Demir, Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow, Chemical Engineering Journal, 213 (2012) 41–49.

 [13] S. Padron, Fuentes, D. Caruntu, K. Lozano, Experimental study of nanofiber production through forcespinning, J. Appl. Phys., 113 (2013) 024318.

 [14] M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker, Nanofiber assembly by rotary jet-spinning, Nano Lett., 10 (2010) 2257–2261.

 [15] K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. Hoyos, H. Vasquez, K. Lozano, Electrospinning to Forcespinning™, Materials Today, 13, 11 (2010) 12–14.

[16] A. Zhang, T. Asakura, G. Uchiyama, The adsorption mechaism of uranium (VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group, React. Funct. Polym., 57 (2003) 67-76.

 [17] H. Pan, W. Liao, Ch. Wai, Y. Oyola, Ch. Janke, G. Tian, L. Rao, Carbonate–H2O2 leaching for sequestering uranium from seawater, Dalton Trans., 43 (2014) 10713-10718.

 [18] Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy, Oak Ridge National Laboratory, 53 (2013).

 [19] R. Djogic, L. Sipos, M. Branica, Characterization of uranium(V1) in seawater, Limnol. Oceanogr., 31, 5 (1986) 1122-l131.

 [20] A. Krestou, D. Panias, Uranium (VI) speciation diagrams in the UO22+/CO32-/H2O system at 25̊C, Eur. J. Miner. Process. Environ. Prot., 4, 2 (1004) 303-0868.

کلیدواژه‌ها


عنوان مقاله [English]

Production and Modification of Poly(Styrene-Acrylonitrile)-Polycarbonate Nanofibers and Evaluation of its Adsorption Behavior on Uranium in Aqueous Solutions

نویسندگان [English]

  • A Naderi 1
  • S. M Ghoreishi 1
  • M Firozzare 2
  • M. R Almasian 2
چکیده [English]

The removal and recovery of uranium from aqueous media has been considered by many of scientists and researchers since a long time ago. In this work it has been tried to produce the nano adsorbent that be able to separate the uranium from nuclear waste waters and the other aqueous media. For this purpose poly(styrene-acrylonitrile) nanofibers and their composite with polycarbonate nanofibers have been prepared and used as adsorbent of uranium after chemical modification. The chemical modification was performed by the conversion of nitrile groups to amidoxime groups by hydroxyl amine solution and akaline treatment by sodium hydroxide 2.5%. The amidoximation was confirmed by infrared spectroscopy. The maximum capacities of uranium adsorption were 79.8 and 38.5 mg U/g ads for poly(styrene-acrylonitrile) and poly(styrene-acrylonitrile)/polycarbonate composite respectively. The optimum pH was 4 for uranium adsorption. The desorption yield was more than 90% in  Na2CO3 1M /H2O2 1M solution.

[1] A.S. Nagy, L. Matel, J. Lesny, Geochemistry and Determination Possibilities of Uranium in natural Waters, Acta Technica Jaurinensis, 1, 2 (2009) 19-34.

 [2] B. Khadro, N. Jafferzic-Renult, A miniaturized system for ultratrace uranium analysis in waters, Procedia Engineering, 5 (2010) 1212-1215.

 [3] U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based bio sorbents A review, Bio resource Technology, 101 (2001) 5043–5053.

 [4] H. Yamashita, Y. Ozawa, F. Nakajima, T. Murata, The Collection of Uranium from Sea Water with Hydrous Metal Oxide. II. The Mechanism of Uranium Adsorption on Hydrous Titanium (IV) Oxide, Bull. Chem. Soc. Jpn., 53 (1980) 1-5.

 [5] H.J. Schenk, L. Astheimer, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater Assessment of key parameters and screening studies of sorber materials, Sep. Sci. Technol., 17 (1982) 1293-1308.

 [6] P.A. Kavaklı, N. Seko, M. Tamada, O. Güven, Radiation-induced graft polymerization of glycidyl methacrylate onto PE/PP nonwoven fabric and its modification toward enhanced amidoximation, J. Appl. Polym. Sci., 105 (2007) 1551-1558.

 [7] P.A. Kavaklı, N. Seko, M. Tamada, O. Güven, Adsorption Efficiency of a New Adsorbent Towards Uranium and Vanadium Ions at Low Concentrations, Sep. Sci. Tech., 39, 7 (2004) 1631–1643.

 [8] I.H. Park, J.M. Suh, Preparation and uranyl ion adsorptivity of macroreticular chelating resins containing a pair of neighboring amidoxime groups in a monomeric styrene unit, Makromol. Chem., 239 (1996) 121–132.

 [9] L. Rao, Recent International R&D activities in the extraction of uranium from seawater, Lawrence Berkeley National Laboratory, (2011) 1-20.

 [10] S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, Extracting Uranium from Seawater: Promising AI Series Adsorbents, Industrial & Engineering Chemistry Research, 55, 15 (2016) 4103–4109.

 [11] S. Das, Y. Oyola, R.T. Mayes, C.J. Janke, L.J. Kuo, Extracting Uranium from Seawater: Promising AI Series Adsorbents, Industrial & Engineering Chemistry Research, 55, 15 (2016) 4110–4117.

 [12] N. Horzum, T. Shahwan, O. Parlak, M. Demir, Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow, Chemical Engineering Journal, 213 (2012) 41–49.

 [13] S. Padron, Fuentes, D. Caruntu, K. Lozano, Experimental study of nanofiber production through forcespinning, J. Appl. Phys., 113 (2013) 024318.

 [14] M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker, Nanofiber assembly by rotary jet-spinning, Nano Lett., 10 (2010) 2257–2261.

 [15] K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. Hoyos, H. Vasquez, K. Lozano, Electrospinning to Forcespinning™, Materials Today, 13, 11 (2010) 12–14.

[16] A. Zhang, T. Asakura, G. Uchiyama, The adsorption mechaism of uranium (VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group, React. Funct. Polym., 57 (2003) 67-76.

 [17] H. Pan, W. Liao, Ch. Wai, Y. Oyola, Ch. Janke, G. Tian, L. Rao, Carbonate–H2O2 leaching for sequestering uranium from seawater, Dalton Trans., 43 (2014) 10713-10718.

 [18] Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy, Oak Ridge National Laboratory, 53 (2013).

 [19] R. Djogic, L. Sipos, M. Branica, Characterization of uranium(V1) in seawater, Limnol. Oceanogr., 31, 5 (1986) 1122-l131.

 [20] A. Krestou, D. Panias, Uranium (VI) speciation diagrams in the UO22+/CO32-/H2O system at 25̊C, Eur. J. Miner. Process. Environ. Prot., 4, 2 (1004) 303-0868.