فرآوری کانسار متاسوماتیت آنومالی 5 ساغند به روش هضم سولفوریک اسیدی

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

امکان استفاده از فرایند هضم اسیدی دما- بالا و کارآیی آن در فرآوری کانسار متاسوماتیت آنومالی 5 ساغند مورد بحث و بررسی قرار گرفت. برای این منظور، نمونه‌هایی از سنگ‌های متاسوماتیت آنومالی 5 ساغند مورد بررسی آزمایشگاهی قرار گرفتند. این نمونه‌ها که حاوی کانی‌های کلسیت، کوارتز، آلبیت، آکتینولیت، ایلمنیت، روتیل، چوکنید، باستنازیت، مونازیت و اسفن بودند، ابتدا با استفاده از روش‌های پیش‌تغلیظ (ثقلی، مغناطیسی و الکترواستاتیکی) مورد پرعیارسازی اولیه قرار گرفتند که در نتیجه میزان کانی‌های سنگین آن‌ها که در نمونه‌های اولیه کم‌تر از %10 بود به بیش از %50 افزایش یافت. این کار با هدف حذف یا کاهش کلسیت و کانی‌های مزاحم و در نتیجه انحلال بهتر و مصرف کم‌تر اسید انجام شد. در این مرحله از بررسی و با استفاده از کنسانتره‌ی به دست آمده، کارآیی فرآیند هضم اسیدی دما- بالا و اثر پارامترهای مختلف مانند دما، زمان هضم، غلظت سولفوریک اسید، نسبت جامد به مایع و غلظت اکسیدان، با هدف تعیین مقادیر بهینه‌ی آن‌ها مورد مطالعه و بررسی قرار گرفت که حاصل آن دمای 200 درجه‌ی سانتی‌گراد، زمان هضم 2 ساعت، غلظت سولفوریک اسید 8/10 مول بر لیتر، نسبت جامد به مایع 1 به 3، و غلظت نیتریک اسید (اکسیدان) 3/5 مول بر لیتر به عنوان مقدارهای بهینه است. تحت این شرایط، اورانیم، توریم، و مجموع عناصر خاکی نادر به میزان، به ترتیب، 85، 83، 42 درصد بازیابی شدند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Processing of Metasomatite Deposit of Saghand Anomaly No. 5 by Sulphuric Acid Digestion

نویسندگان [English]

  • Saeid Alamdar Milani
  • Morteza akbari
  • Mohammad Kiaei
چکیده [English]

This paper deals with the study of digestion processes effectiveness in processing metasomatite deposit of the Saghand anomaly No.5. To accomplish the task, the samples from metasomatite rocks of the Saghand anomaly No.5 were studied in laboratory. The sample containing minerals such as calcite, quartz, albite, actinolite, ilmenite, rutil, chevkenide, bastnasite, monazite, and sphen were first concentrated using the method of pre-concentration (electrostatic, magnetic and gravitation) which led to an increase in the rate of their heavy mineral from 10% to 50%. The purpose was to eliminate or reduce, calcite and other obtrusive minerals, and consequently have a better dissolution and a less consumption of acid. At this stage of study, and by using the produced concentrate, the effectiveness of the digesting process, the effect of different parameters such as temperature, digestion time, sulfuric acid concentration, solid-to-liquid ratio and oxidant concentration, with the aim of determining their optimum values, were studied which resulted in the following values for the above-mentioned parameters: temperature: 200°C, digestion time: 2h, sulfuric acid concentration: 10.8M, solid-to-liquid ratio: 0.33 (w/v), and oxidant (nitric acide) concentration: 5.3M. Under these conditions, the recovery extents of uranium, thorium and REE were found to be 85%, 83%, and 42%, respectively.
 
 

کلیدواژه‌ها [English]

  • Metasomatite Deposit
  • Saghand Anomaly No. 5
  • Uranium-Thorium Minerals
  • Acid Digestion
  • Leaching

1. R. Meera, Synergistic solvent extraction of thorium(IV) and uranium(VI) with R-Diketones in presence of oxo-donors, Ph.D. thesis, India (2004) 1-5.

2. International Atomic Energy Agency, Thorium fuel cycles: potential benefits and challenges, IAEA report, Vienna (2005).

3. R. Lundi, J.R. Wilson, Rare earth metals find interesting new uses despite lack of engineering data, Imperial College Press (2002(.

4. K. Kondo, E. Kamio, Separation of rare earth metals with a polymeric microcapsule membrane, Desalination 144 (2002) 249-254.

5. F. Habashi, A Textbook of hydrometallurgy, Extractive metallurgy, Quebec, Enr, 65-95 (1993) 243-249.

6. F.L. Cathbert, Thorium production technology, National Lead Compony of Ohio, United State of Amearica (1958) 104-120.

7. D. Li, Y. Zuo, S. Meng, Separation of Thorium (IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method, J. Alloys and Compounds, 374 (2004) 431-433.

8. F. Habashi, Handbook of Extractive Hydrometallurgy, Vol. III, New York (1997) 1650-1665.

9. B. Gupta, P. Malik, A. Deep, Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite, J. Radioanal. Nucl. Chem. 252 (2002) 451-456.

10. R. Vijayalakshmi, S.L. Mishra, H. Singh, C.K. Gupta, Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths, Hydrometallurgy, 61 (2001) 75-80.

11. M. El-Hussaini, M. Omneya, M.A. Mahdy, Sulfuric acid leaching of Kab Amiri niobium-tantalum bearing minerals, Central Eastern Desert, Egy, Hydrometallurgy, 64 (2002) 219-229.
12. N.N. Soe, L.T. Shwe, K.T. Lwin, Study on Extraction of lanthanum oxide from monazite concentrate, World Academy of Science, Engineering and Technology, 22 (2008).

13. H.H. Htwe, K.T. Lwin, Study on extraction of niobium oxide from Columbite-Tantalite concentrate, World Academy of Science, Engineering and Technology, 46 (2008).

14. H.H. Bahti, Y. Mulyasih, A. Anggraeni, Extraction and chromatographic studies on rare-earth elements (REEs) from their minerals: the prospect of REEs production in Indonesia, Proceedings of the 2nd international seminar on chemistry, Jatinangor, 24-25 November (2011) 421-430.

15. M. Kiaie, Uranium and thorium processing investigation in Saghand-Anomaly 5, Master degree thesis, Bahonar Uni. (2000) 26-36.

16. H. Hamidiyan, Increasing Uranium Leachability from Refractory and Low Grade Ore Using Microbial Leaching, Ph.D. thesis, Azad university, Researches and Sciences Campus (2010) 53-104.

17. M. Eskandari Nasab, Separation of thorium, uranium, lanthanides and actinides from Zarigan leach solution using solvent extraction, Ph.D. thesis, Bahonar Uni. (2010) 60-68.

18. M. Gafari, M. Eskandari, Determination of optimum process of ball mill variables, Bachelor,s degree thesis, Bahonar Uni., Zarand faculty (2008) 42-50.

19. S.A. Milani, B. Rezai, A. Emami, Determination of optimum process conditions for sulfuric acid dissolution of Zarigan thorium-uranium ore using Taguchi method, Journal of nuclear science and technology, 60 (2012) 49-57.

20. Z. Chenglong, Z. Youcai, Mechanochemical leaching of sphalerite in an alkaline solution containing lead carbonate, Hydrometallurgy, 100 (2009) 56–59.

21. A.M. Abdel-Rehim, An innovative method for processing Ejyptian monazite, Hydrometalurgy, 67 (2002) 9-17.