پرتو پیوندزنی جاذب برای بهبود ظرفیت جذب فلز نیکل از محلول‌های آبی: کیتوزان/ پلی‌وینیل الکل پرتو پیوند زده شده با اکریلیک اسید

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی، صندوق پستی: 3486-11365، تهران ـ ایران

چکیده

پیوندزنی روشی مفید برای افزایش ظرفیت جذب جاذب‌های پلیمری از طریق پیوند گروه‌های عاملی مناسب بر روی پلیمر پایه است. هدف این پژوهش، بررسی اثر پرتو پیوندزنی اکریلیک اسید بر روی فیلم جاذب کیتوزان/ پلی‌وینیل الکل شبکه‌ای به منظور افزایش میزان جذب فلز نیکل از محلول‌های آبی بود. برای انجام این مهم، مونومر اکریلیک اسید با استفاده از اثر پرتو گاما بر روی فیلم‌های کیتوزان/ پلی‌وینیل الکل شبکه‌ای، پیوند زده شد. اثر دز پرتو بر روی درصد پیوند مورد مطالعه قرار گرفت. ساختار شیمیایی جاذب با استفاده از طیف‌نمایی تبدیل فوریه‌ی زیر قرمز (FTIR) ارزیابی شد. آزمایش‌های جذب نیکل بر روی جاذب با تغییر متغیرهایی چون pH محیط، دز پرتو و غلظت اولیه‌ی محلول حاوی نیکل، به روش ناپیوسته انجام شد. مدل‌سازی جذب با استفاده از هم‌دماهای لانگمویر و دوبینین- رادشکویچ به انجام رسید و داده‌های آزمایشگاهی با مدل لانگمویر نسبت به مدل دوبینین- رادشکویچ بهتر برازش شدند. در نهایت، نتایج، بهبود میزان جذب فلز نیکل، از طریق پرتو پیوندزنی اکریلیک اسید به عنوان یک گروه عاملی اکسیژن‌دار بر روی فیلم کیتوزان/ پلی‌وینیل الکل شبکه‌ای را به اثبات رسانید.
 

کلیدواژه‌ها


عنوان مقاله [English]

Radiation Grafting of Adsorbent for Improving Nickel Adsorption Capacity from Aqueous Solutions: Chitosan/ Poly (Vinyl Alcohol) Radiation Grafted with Acrylic Acid

نویسندگان [English]

  • Nasrin Sheikh
  • Shohreh Kianfar
چکیده [English]

groups bonded to the polymer. The aim of this study was to investigate the effect of radiation grafting of acrylic acid on the crosslinked Chitosan/poly (vinyl alcohol) adsorbent film to improve the absorption of nickel from aqueous solutions. For this purpose, acrylic acid (AA) monomer was grafted on the crosslinked Chitosan/poly (vinyl alcohol) film by using gamma radiation. The effect of radiation dose on the grafting percentage was studied. The chemical structure of the adsorbent was determined by FTIR spectroscopy. Nickel adsorption experiments were carried out as a function of the pH of media, irradiation dose and initial concentration of Ni solution by means of batch method. Adsorption modeling was made by Langmuir and Dubinin-Radushkevich isotherms and the experimental measurements were well fitted to the Langmuir adsorption model. Finally, the results showed the nickel adsorption improvement on the crosslinked Chitosan/ poly (vinyl alcohol) film by radiation grafting of acrylic acid as an oxygen-containing functional group.
 
 

کلیدواژه‌ها [English]

  • Chitosan/Poly (Vinyl Alcohol)
  • Acrylic Acid
  • Radiation Grafting
  • Adsorption
  • Nickel

1. M. Athar, S. Vohora, Heavy metals and environment, New Delhi, New Age International, (1995).

2. A.M. Uçurum, Study of removal of Pb heavy metal ions from aqueous solution using lignite and a new cheap adsorbent (lignite washing plant tailings), Fuel, 88 (2009) 1460-1465.

3. R. Rostamian, M. Najafi, A.A. Rafati, Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: kinetics, isotherms and error analysis, Chemical Engineering Journal, 171 (2011) 1004-1011.

4. A. Aklil, M. Mouflih, S. Sebti, Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent, Journal of Hazardous Materials, 112 (2004) 183-190.

5. K. Gotoh, K. Matsushima, K.I. Kikuchi, Adsorption of Cu and Mn on covalently cross-linked alginate gel beads, Chemosphere, 55 (2004) 57-64.

6. B.S. Inbaraj, J.S. Wang, J.F. Lu, F.Y. Siao, B.H. Chen, Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid), Bioresource Technology, 100 (2009) 200-207.

7. V.T.P. Vinod, R.B. Sashidhar, A.A. Sukumar, Competitive adsorption of toxic heavy metal contaminants by gumkondagogu (Cochlospermumgossypium): A natural hydrocolloid, Colloids and Surfaces B: Biointerfaces, 75 (2010) 490-495.

8. R. Vieira, B. Volesky, Biosorption: a solution to pollution, International Microbiol, 3 (2000) 17-24.

9. B. Kannamba, K.L. Reddy, B.V. Apparao, Removal of Cu(II) from aqueous solutions using chemically modified chitosan, Journal of Hazardous Materials, 175 (2010) 939-948.

10. K.Z. Elwakeel, Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins, Desalination, 250 (2010) 105–112.
11. J. Cao, Y.B. Tan, Y.J. Che, H.P. Xin, Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: an effective adsorbent for the removal of heavy metal from aqueous solution, Bioresource Technol, 101 (2010) 2558–2561.

12. H.A. Shawky, Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I), J Appl Polym Sci, 114 (2009) 2608–2615.

13. A. Sionkowska, current research on the blends of natural and synthetic polymers as new biomaterials, Progress in polymer science, 36 (2011) 1254-1257.

14. N. Sheikh, Sh. Kianfar, Crosslinked polymeric adsorbents efficiency for heavy metals removal from water by adsorption isotherm studies, Journal of water & Wastewater (In press).

15. K. Mahendra, P.T. Bijay, K.S. Vinod, Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater, Journal of Hazardous Materials, 172 (2009) 1041-1048.

16. Y. Li, H. Yu, B. Liang, Y. Fang, Study of radiation induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution, Journal of Applied Polymer Science, 90 (2003) 2855-2860.

17. H. Hosseini, J. Simiari, B. Farhadpour, Chemical and Electrochemical Grafting of Polyaniline onto Chitosan, Iranian Polymer Journal, 18 (1) (2009) 3-13.

18. M.H. Casimiro, M.L. Botelho, J.P. Leal, M.H. Gil, Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan, Radiation Physics and Chemistry, 72 (2005) 731-735.

19. A. Shanmugapriya, R. Ramya, S. Ramasubramaniam, P.N. Sudha, Studies on removal of Cr(VI) and Cu(II) ions using Chitosangrafted- polyacrylonitrile, Archives of Applied Science Research, 3 (3) (2011) 424-435.

20. A. Shanmugapriya, A. Srividhya, R. Ramya, P.N. Sudha, Graft copolymerization of Chitosan with acrylic acid used in waste water treatment, International Journal of Environmental Sciences, 1 (2011) 2086-2095.

21. Q.H. Nguyen, V.P. Dang, N.D. Nguyen, Th.H. Ha, Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236 (2005) 606–610.

22. N. Sheikh, Sh. Kianfar, Preparation of polyvinyl alcohol absorbent films: comparison of radiation and chemical crosslinked films, J of Nuclear Sci. and Tech, 50 (2010) 14-20.

23. M. Al-Meshragi, H.G. Ibrahim, M.M. Aboabboud, Equilibrium and Kinetics of Chromium Adsorption on Cement Kiln Dust, Proceedings of the World Congress on Engineering and Computer Science, WCECS, October 22-24, San Francisco, USA (2008).

24. S.M. Venkata, Y. Vijaya, A.R. Subba, G. Yuvaraja, A. Krishnaiah, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto Trametesversicolor biomass, Desalination, 276 (2011) 310-316.

25. Z. Yian, H. Dajian, W. Aiqin, Chitosan g-poly (acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery, Analytica Chimica Acta, 687 (2011) 193-200.
26. Sh. Chun, W. Yujun, X. Jianhong, L. Guangsheng, Chitosan supported on porous glass beads as a new green adsorbent for heavy metal recovery, Chemical Engineering Journal, 229 (2013) 217–224.

27. M.F. Cybelle, T. Wan-Chi, L. Shiow-Shyung, L.D. Maria, W. Meng-Wei, Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in a ternary system, Sustain. Environ. Res, 22(6) (2012) 345-355.

28. K. Serkan, Comparative adsorption studies of heavy metal ions on chitin and chitosan biopolymers, MS. thesis. Izamir University, Turkey (2007).

29. V.N. Tirtom, A. Dincer, S. Becerik, T. Aydemir, A. Celik, Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichlorohydrin Crosslinked Chitosan-clay Composite Beads in Aqueous Solution, Chemical Engineering Journal, 197 (2012) 379-386.

30. G.Y. Zhang, R.J. Qu, C.M. Sun, C.N. Ji, H. Chen, C.H. Wang, Adsorption for metal ions of chitosan coated cotton fiber, Journal of Applied Polymer Science, 110 (2008) 2321–2327.

31. H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Material Science and Engineering C, 30 (2010) 304–310.