بررسی فرایند پیش‌تغلیظ توریم در سنگ معدن آنومالی 5 ساغند با استفاده از مارپیچ همفری و بهینه‌سازی آن با روش آماری

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

جداسازی با مارپیچ همفری یکی از شیوه‌های کنسانتره‌سازی کانی‌ها است که اساس آن روش‌های ثقلی است. عملکرد کنسانتره‌سازی در فرایندهای فرآوری مواد معدنی، به وسیله‌ی عیار و بازیابی مشخص می‌شود. این عامل‌ها وابسته به انتخاب مناسب متغیرهای فرایندی است. در این مقاله آرایه‌ی متعامد 9L برای طراحی آزمایش‌ها بر مبنای بهینه‌سازی چندگانه برای دست‌یابی به بالاترین عیار و بازیابی مورد استفاده قرار می‌گیرد. در این آزمایش‌ها پارامترهای نرخ خوراک‌دهی، درصد جامد پالپ و اندازه‌ی ذرات ورودی خوراک مورد بررسی قرار گرفته و نتایج آزمایش‎ها نشان می‌دهند که دستگاه مارپیچ همفری، برای پیش‌کنسانتره‌سازی مطلوب بوده و با بهینه‌سازی پارامترهای مؤثر بر عملکرد آن، عیار و بازیابی توریم، به ترتیب، 49 و 5 درصد افزایش می‌یابد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Thorium Preconcentration Process on 5th Anomaly of the Saghand Ore and its Optimization Using Statistical Method

نویسندگان [English]

  • Alireza Khanchi
  • Hasan Sedighi
  • Sheida Ansar
  • Javad Fasihi Ramandi
  • Iraj Akbari
چکیده [English]

The Humphrey spiral is one of the mineral concentration techniques based on gravity separation. In various mineral processes, the characteristics of concentration performance are indicated by the grade and recovery factors. These factors depend on appropriate selection of process parameters. In this work, The L9 orthogonal array is used in the design of an experiment based on multi-objective optimization method to achieve the maximum concentration grade and recovery. The input process parameters that have been considered are the feed size, feed rate, and feed solids. The results show that the Humphrey spiral can be considered as a suitable technique for the preconcentration of thorium. Accordingly, upon considering the parameters which are affecting the performance of the Humphrey spiral, the grade and recovery of thorium increase to 49 and 5 percent, respectively.

کلیدواژه‌ها [English]

  • Preconcentration
  • Thorium
  • 5th Anomaly of Saghand
  • Humphrey Spiral
  • Optimization

1. U. Turan, What is the potential use of thorium in the future energy production, Progress in Nuclear Energy, 37 (2000) 137-144.

2. J. Merkel Broder, Andrea Hasche-Berger, Uranium, Mining and Hydrogeology, Springer (2008) 54-58.

3. R. Omar, Z. Ali Rahman, M.T. Latif, Rare earth processing in Malaysia, Proceedings of the Regional Symposium on Environment and Natural Resources, Malaysia. 1 (2002) 287-295.

4. B. Samani, Geological phenomena and uranium mineralization in the Sagand area, Atomic Energy Organization of Iran, (1366) 11-19.
5. Nuclear Energy Agency, Uranium 2007: Resources, Production and Demand, OECD Nuclear Energy Agency and the International Atomic Energy Agency (2008) 218-223.

6. P.M.B. Pillai, Naturally Occurring Radioactive Materials (NORM) in the Extraction and Processing of Rare Earths, Indian Rare Earths Ltd (2008) 1-4.

7. G. Özbayoğlu, Atalay, Beneficiation of bastnaesite by a multi-gravity separator, Journal of Alloys and Compounds, 303 (2000) 520-523.

8. M. Kul, Y. Topkaya, İ. Karakaya, Rare earth double sulfates from pre-concentrated bastnasite, Elsevier, Hydrometallurgy, 93 (2007) 129-135.

9. Y.M. Anwar, A.M. Abdel-Rehim, Extraction of thorium from Egyptian monazite Bull, Fac. Sci. Alex. Univ, 10 (1970) 152-171.

10. F.L. Cuthbert, Thorium Production Technology, US Atomic Energy Comm., Addison (1958).

11. C. Maurice, N. Kenneth, Principles of mineral processing, SME, -Technology & Engineering (2003) 2422.

12. J. Antony, Multi-response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis, Quality and Reliability Engineering International, 16 (2000) 3.

13. N. Aslan, Multi-objective optimization of some process parameters of a multi-gravity separator for chromite concentration, Separation and Purification Technology, 64 (2008) 237.

14. P.J. Ross, Taguchi Techniques for Quality Engineering, McGray Hill, New York (1988).

15. M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ (1989).

16. J. Antony, Simultaneous Optimisation of Multiple Quality Characteristics in Manufacturing Processes Using Taguchi's Quality Loss Function, The International Journal of Advanced Manufacturing Technology, 17 (2001) 134.

17. W.H. Yang, Y.S. Tarng, Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology, 84 (1998) 122.