استفاده از مدل سوآن در پیش‌گویی چگونگی پخش مواد پرتوزا در آب‌های سطحی سواحل شمالی دریای عمان

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه اصفهان، صندوق پستی: 73441-81746، اصفهان ـ ایران

چکیده

هدف این پژوهش، پیاده‌سازی یک طرح نمونه برداری مدیریت شده به منظور برآورد سریع پخش هسته‌های پرتوزای طبیعی در سواحل شمالی دریای عمان بود. نتیجه‌ی این پژوهش می‌تواند برای برآورد سریع پخش هسته‌های پرتوزای ناشی از رخدادهای هسته‌ای در آب‌های سطحی سواحل شمالی دریای عمان نیز به کار گرفته شود. با اندازه‌گیری غلظت هسته‌های پرتوزای طبیعی در نمونه‌های آب‌های سطحی سواحل دریای عمان و تقسیم منطقه‌ی جغرافیایی تحت مطالعه به 9 شبکه‌ی منظم، پارامترهای موج در این شبکه‌ها با استفاده از مدل شبیه‌ساز نسل سومی سوآن مشخص و جهت برتر موج و نقاط با غلظت‌های بالاتر هسته‌های پرتوزای طبیعی با یک‌دیگر ترکیب و نقاط نماینده‌ی نقاط آلوده، برای نمونه برداری معرفی شد. نتایج حاکی از این بود که هسته‌های پرتوزای طبیعی در فاصله‌ی بین شبکه‌های 8600 تا 8604، در شبکه‌ی 8600 تجمع داشته و در فاصله‌ی بین شبکه‌های 8605 تا 8608، به سمت بخش میانی دریای عمان سوق می‌یابند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Using the SWAN Model in Radioactive Material Diffusion Prediction in Surface Waters Along the Northern Coast of Oman Sea

نویسندگان [English]

  • Mohammadreza Zare
  • Seyed Mojtaba Mostajaboddavati
  • mohammadreza Abdi
  • Smaeil Hassanzadeh
چکیده [English]

 This study aimed to establish a managed sampling plan for a rapid estimation of natural radionuclides diffusion in the northern coast of the Oman Sea. The plan can be developed for the rapid estimate of radionuclide diffusion consequences in post-accidental situations. By determining the concentration of the natural radionuclides in 5 surface water samples, dividing the geographical domain into nine separated grids and using the third generation spectral SWAN model, the preferable wave direction and points with the higher radioactivity concentrations were combined to predict the representative contaminated areas for sampling, even in post-accidental situations. The results indicate that the natural radioactivity concentration between the grids 8600 and 8604 are gathered in the grid 8600 and between the grids of 8605 and 8608 propagating toward the middle part of the Oman Sea.
 
 

کلیدواژه‌ها [English]

  • Gamma Spectrometry
  • SWAN Model
  • Radioactive Material Diffusion
  • Oman Sea

1. M.R. Zare, M. Mostajaboddavati, M. Kamali, M.R. Abdi, M.S. Mortazavi, 235U, 238U, 232Th, 40K and 137Cs activity concentrations in marine sediments along the northern coast of Oman sea using high-resolution gamma-ray spectrometry, Marine Pollution Bulletin, 64(9) (2012) 1956–1961.

2. C. Duffa, H. Thebault, A radioecological risk assessment tool for post-accidental situations: application in the Toulon marine area (South of France), Towards Convergence of Technical Nuclear Safety Practices in Europe, (2009).

3. Y. Li, Y. Jin, Y. Yin, H. Shen, X. Zhang, Sea Surface Simulation in Large Coastal Region for Maritime Simulators, Fifth International Conference on Image and Graphics, (2009).

4. A. Akpinar, M.I. Komurcu, Assessment of wave energy resource of the Black sea based on 15-year numerical hindcast data, Applied Energy, 101 (2013) 502-512.

5. E. Rusu, S.C. Guedes, Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore, Renewable Energy, 34 (2009) 1501–1516.

6. A. Saket, A. Shahidi, Wave energy potential along the northern coasts of the gulf of Oman, Iran, Renewable Energy, 40 (2012) 90-97.

7. F. Xu, W. Perrie, B. Toulany, C.P. Smith, Wind-generated waves in Hurricane Juan, Ocean Modelling, 16 (2007) 188–205.

8. L. Gorrell, B. Raubenheimer, E. Steve, R.T. Guza, SWAN predictions of waves observed in shallow water onshore of complex bathymetry, Coastal Engineering, 58 (2011) 510–516.

9. R.J. De Meijer, I.C. Tanczos, C. Stapel, Radiometry as a technique for use in coastal research, New Techniques in Continental Shelf research. Geological Society Special Publications, 117 (1996) 289-297.

10. S.A. Talha, R.J. De Meijer, R. Lindsay, R.T. Newman, P.P. Maleka, I.N. Hlatshwayo, In-field radon measurement in water: a novel approach, Journal of Environmental Radioactivity, 101 (2010) 1024-1031.
11. L.Q. Xu, X.D. Liu, L.G. Sun, H. Yan, Y. Liu, Y.H. Luo, J. Huang, Y.H. Wang, Distribution of radionuclides in the guano sediments of Xisha Islands, South China Sea and its implication, Environmental Radioactivity, 101 (2010) 362-368.

12. M.H. Moeini, A. Etemad-Shahidi, V. Chegini, Wave modeling and extreme value analysis off the northern coast of the Persian Gulf, Applied Ocean Research, 32 (2010) 209-218.

13. K. Gunwoo, M.J. Weon, S.L. Kwang, J. Kicheon, E.L. Myung, Offshore and nearshore wave energy assessment around the Korean Peninsula, Energy, 36 (2011) 1460-1469.

14. R.P. Signell, S. Carniel, L. Cavaleri, J. Chiggiato, J.D. Doyle, J. Pullen, M. Sclavo, Assessment of wind quality for oceanographic modelling in semi-enclosed basins, Journal of Marine Systems, 53 (2005) 217–233.

15. V. Alari, U. Raudsepp, T. Kouts, Wind wave measurements and modelling in Küdema Bay, Estonian Archipelago Sea, Journal of Marine Systems, 74 (2008) S30–S40.

16. J.M. Brown, A case study of combined wave and water levels under storm conditions using WAM and SWAN in a shallow water application, Ocean Modelling, 35 (2010) 215–229.

17. H.O. Shan, M.L. Jian, W.H. Tai, Y.T. Shiaw, Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan, Ocean Engineering, 29 (2002) 947–971.

18. The SWAN team, SWAN user manual (Cycle III version 40.51AB). Delft: Delft University of Technology, (2007).

19. O.S. Madsen, Y.K. Poon, H.C. Graber, Spectral wave attenuation by bottom friction, In: Theory, Proceedings of the 21st International Conference on Coastal Engineering, ASCE, (1988) 492–504.

20. P.A.E.M. Janssen, Quasi-linear theory of wind-wave generation applied to wave forecasting, Journal of Physical Oceanography, 21 (1991) 1631–1642.
21. S.C. Hagen, O. Horstmann, R.J. Bennett, An Unstructured Mesh Generation Algorithm for Shallow Water Modeling, International Journal of Computational Fluid Dynamics, 16 (2) (2002) 83–91.

22. E. Rusu, D. Conley, C.E. Ferreira, A hybrid framework for predicting waves and longshore currents, Journal of Marine Systems, 69 (2008) 59–73.

23. M. Zijlema, A.J. Van der Westhuysen, On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra, Coastal Engineering, 52 (2005) 237–256.
24. A.J.C. Crespo, G.M. Gómez, P. Carracedo, R.A. Dalrymple, Hybridation of generation propagation models and SPH model to study severe sea states in Galician Coast, Journal of Marine Systems, 72 (2008) 135–144.

25. E. Rusu, C.G. Soares, Wave energy pattern around the Madeira Islands, Energy, 45 (2012) 771-785.