جذب زیستی اورانیم از محلول‌های آبی با استفاده از سویه‌ی مرجع و بومی قارچ آسپرژیلوس نیجر زنده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 شرکت سامان نور گسیل، سازمان انرژی اتمی، صندوق پستی: 1339-14155، تهران ـ ایران

2 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، صندوق پستی: 9465-11365، تهران ـ ایران

چکیده

از دو سویه­‌ی بومی و مرجع قارچ آسپرژیلوس نیجر زنده برای حذف زیستی فلز سنگین اورانیم از محلول‌­های رقیق آبی استفاده شد. تأثیر pH (3-7)، غلظت اولیه­‌ی فلز (10-500 میلی­گرم بر لیتر)، زمان (30 -1440 دقیقه) و زیست توده‌­ی خشک (0.5-5 گرم بر لیتر) بررسی شد. جذب زیستی بیشینه در 5=pH و برابر 82.30 و 74.19 درصد برای سویه‌­ی، به ترتیب، مرجع و بومی به دست آمد. جذب بیشینه در غلظت اولیه­‌ی 500 میلی­گرم بر لیتر اورانیم و برای دو سویه­‌ی مرجع و بومی قارچ به ترتیب، 105 و 143.5 میلی­گرم اورانیم بر گرم زیست توده­‌ی خشک بود. واکنش زیستی، در مدت 60 و 120 دقیقه برای سویه­‌ی به ترتیب، مرجع و بومی به تعادل رسید. ظرفیت جذب بیشینه در مقدار 2 گرم بر لیتر زیست توده­‌ی خشک برای هر دو سویه­‌ی قارچ به دست آمد. مدل لانگمویر داده­‌های به دست آمده برای هر دو سویه‌­ی مرجع و بومی را با R2، به ترتیب، برابر با 0.9972 و 9979/0 به خوبی برازش نمود. با توجه به نتایج به دست آمده می‌­توان نتیجه گرفت که سویه­‌ی مرجع زیست توده­‌ی
زنده­‌ی آسپرژیلوس نیجر نسبت به سویه­‌ی بومی آن توانایی بیش­تری در حذف فلز اورانیم از محلول‌­های آبی دارد.

تازه های تحقیق

  1. M. Abarca, M. Bragulat, G. Castella, F. Cabanes, Ochratoxin a production by strains of Aspergillus niger var. niger., Application Environment Microbiology, 60 (1994) 2650–2659.
  2.  2.   Y. Khambhaty, K. Mody, S. Basha, B. Jha, Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger, Chem. Eng. J., 145 (2009) 489-495.

 3.   J.L. Zhou, R.J. Kiff, The uptake of copper from aqueous solution by immobilized fungal biomass, Journal of Chemical Technology and Biotechnology, 52 (1991) 317-330.

 4.   R. Faryal, A. Sultan, F. Tahir, S. Ahmad, A. Hameed, Biosorption of lead by indigenous fungal strains, Pakistan Journal of Botany, 39 (2007) 615-62.

 5.   J.S. Wang, X.J. Hu, Y.G. Liu, S.B. Xie, Z.L. Bao, Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads, Chemical Engineering Journal, 170 (2011) 1-6.

 6.   T. Mathialagan, T. Viraraghavan, Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass, Bioresour, Technol, 100 (2009) 549–558.

 7.   A. Cabuk, S. Ilhan, C. Filik, F. Caliskan, Pb2+ Biosorption by pretreated fungal biomass, Turkey Journal of Biology, 29 (2005) 23-28.

 8.   C. Kuber, F.S. Bhainsa, F.D. Souza, Biosorption of uranium(VI) by Aspergillus fumigates, Biotechnology Techniques, 13 (1999) 695-699.

 9.   D.V. Nilanjana, R. Vimala, P. Karthika, Biosorption of heavy metals-An overview, Indian Journal of Biotechnology, 7 (2007) 159-169.

 10.G. Ulay, B. Glu, G.C. Elik, M.Y. Arica, Studies on accumulation of uranium by fungus, Journal of Hazardous Materials, B136 (2006) 345-353.

 11.M. Ghasemian, A.R. Keshtkar, R. Dabbagh, S.J. Safdari, Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling, Journal of Hazardous Materials, 189 (2011) 141-149.

12.J. Yang, B. Volesky, Biosorption of uranium on sargassum biomass, Water Res, 33 (1999) 3357-3363.

 13.S.V. Bhat, J.S. Melo, B.B. Chaugule, S.F. DSouza, Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga, Journal of Hazardous Materials, 158 (2008) 628-635.

 14.V.H. Dang, H.D. Doan, T Dang, A. Lohi, Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw, Journal Bioresource Technology, 54 (2008) 102-112.

 15.C. Gok, S. Aytas, Biosorption of uranium(VI) from aqueous solution using calcium alginate beads, J. Hazard. Mater, 168 (2009) 369–375.

 16.Y.P. Kumar, P. King, V.S. Prasad, Zinc biosorption on Tectona grandis leaves biomass, Engineering Journal, 124 (2003) 63-70.

 17.M.X. Loukidou, T.D. Karapantsios, A.L. Zouboulis, K.A. Matis, Diffution kinetic study of cadmium(II) biosorption by Aeromonas caviae, Journal of Chemical Technology and Biotechnology, 79 (2004) 711-719.

 18.K. Akhtar, M.W. Akhtar, A.M. Khalid, Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum, Water Research, 41 (2007) 1366-1378.

 19.C. Pang, Y.H. Liu, X.H. Cao, M. Li, G.L. Huang, R. Hua, C.X. Wang, Y.T. Liu, X.F. An, Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum, Chemical Engineering Journal, 170 (2011) 1-6.

 20.R. Narsi, G. Bishnoi, Fungus-an alternative for bioremediation of heavy metal containing wastewater: A review, Journal Scientific and Industrial Research, 64 (2005) 93-100.

 21.S. Saxena, M. Prasad, S.F. D’Souza, Radiionuclide sorption onto low-cost mineral adsorbent, Ind. Eng. Chem. Res., 45 (2006) 9122-9128.

کلیدواژه‌ها


عنوان مقاله [English]

Biosorption of Uranium from Aqueous Solution by Reference and Indigenous Strains of Live Aspergillus.niger

نویسندگان [English]

  • S Sana 1
  • R Roostaaazad 2
  • S Yaghmaei 2
چکیده [English]

The biosorption characteristics of uranium(VI) on reference and indigenous strains of live A.niger were evaluated. The influences of pH (3.0-7.0), biomass concentration (0.05-0.5 g dry biomass /100mL), initial uranium concentration (10-500mg/L), and contact time(30-1440 minutes) were investigated. In order to determine the residual concentration of metal, inductive coupled plasma spectrometry was used. The results indicate that the maximum biosorption of U on reference and indigenous biomass occur at pH=5 as 82.30% and 74.19%, respectively. The biosorption equilibrium was established in 60 and 120 minutes for reference and indigenous biomasses, respectively. The maximum biosorption was observed at a concentration 0.2 g dry biomass/100 mL for both biomasses. The maximum biosorption capacity of U was developed at an initial concentration of uranium 500mg/L as 105 and 143.5 mgU/g dry biomass for reference and indigenous biomasses, respectively. The adsorption process of reference and indigenous live A.niger could be well-defined by Langmuir isotherm with R2 values of 0.9972 and 0.9979, respectively. The obtained results indicated that the reference strain of live A.niger is more efficient for biosorption of U from aqueous solution in comparison with indigenous strain.

کلیدواژه‌ها [English]

  • Uranium
  • Biosorption
  • Reference and Indigenous Strains
  • Aspergillus. niger
  1. M. Abarca, M. Bragulat, G. Castella, F. Cabanes, Ochratoxin a production by strains of Aspergillus niger var. niger., Application Environment Microbiology, 60 (1994) 2650–2659.
  2.  2.   Y. Khambhaty, K. Mody, S. Basha, B. Jha, Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger, Chem. Eng. J., 145 (2009) 489-495.

 3.   J.L. Zhou, R.J. Kiff, The uptake of copper from aqueous solution by immobilized fungal biomass, Journal of Chemical Technology and Biotechnology, 52 (1991) 317-330.

 4.   R. Faryal, A. Sultan, F. Tahir, S. Ahmad, A. Hameed, Biosorption of lead by indigenous fungal strains, Pakistan Journal of Botany, 39 (2007) 615-62.

 5.   J.S. Wang, X.J. Hu, Y.G. Liu, S.B. Xie, Z.L. Bao, Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads, Chemical Engineering Journal, 170 (2011) 1-6.

 6.   T. Mathialagan, T. Viraraghavan, Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass, Bioresour, Technol, 100 (2009) 549–558.

 7.   A. Cabuk, S. Ilhan, C. Filik, F. Caliskan, Pb2+ Biosorption by pretreated fungal biomass, Turkey Journal of Biology, 29 (2005) 23-28.

 8.   C. Kuber, F.S. Bhainsa, F.D. Souza, Biosorption of uranium(VI) by Aspergillus fumigates, Biotechnology Techniques, 13 (1999) 695-699.

 9.   D.V. Nilanjana, R. Vimala, P. Karthika, Biosorption of heavy metals-An overview, Indian Journal of Biotechnology, 7 (2007) 159-169.

 10.G. Ulay, B. Glu, G.C. Elik, M.Y. Arica, Studies on accumulation of uranium by fungus, Journal of Hazardous Materials, B136 (2006) 345-353.

 11.M. Ghasemian, A.R. Keshtkar, R. Dabbagh, S.J. Safdari, Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling, Journal of Hazardous Materials, 189 (2011) 141-149.

12.J. Yang, B. Volesky, Biosorption of uranium on sargassum biomass, Water Res, 33 (1999) 3357-3363.

 13.S.V. Bhat, J.S. Melo, B.B. Chaugule, S.F. DSouza, Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga, Journal of Hazardous Materials, 158 (2008) 628-635.

 14.V.H. Dang, H.D. Doan, T Dang, A. Lohi, Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw, Journal Bioresource Technology, 54 (2008) 102-112.

 15.C. Gok, S. Aytas, Biosorption of uranium(VI) from aqueous solution using calcium alginate beads, J. Hazard. Mater, 168 (2009) 369–375.

 16.Y.P. Kumar, P. King, V.S. Prasad, Zinc biosorption on Tectona grandis leaves biomass, Engineering Journal, 124 (2003) 63-70.

 17.M.X. Loukidou, T.D. Karapantsios, A.L. Zouboulis, K.A. Matis, Diffution kinetic study of cadmium(II) biosorption by Aeromonas caviae, Journal of Chemical Technology and Biotechnology, 79 (2004) 711-719.

 18.K. Akhtar, M.W. Akhtar, A.M. Khalid, Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum, Water Research, 41 (2007) 1366-1378.

 19.C. Pang, Y.H. Liu, X.H. Cao, M. Li, G.L. Huang, R. Hua, C.X. Wang, Y.T. Liu, X.F. An, Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum, Chemical Engineering Journal, 170 (2011) 1-6.

 20.R. Narsi, G. Bishnoi, Fungus-an alternative for bioremediation of heavy metal containing wastewater: A review, Journal Scientific and Industrial Research, 64 (2005) 93-100.

 21.S. Saxena, M. Prasad, S.F. D’Souza, Radiionuclide sorption onto low-cost mineral adsorbent, Ind. Eng. Chem. Res., 45 (2006) 9122-9128.