اثر کاربری اراضی بر تغییرات سن کربن-14 و تعیین کیفیت مواد آلی خاک با استفاده از طیف‌سنجی تبدیل فوریه‌ی زیر قرمز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی تحقیقات کشاورزی، پزشکی، و صنعتی، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 498-31485، کرج ایران

2 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 836-14395، تهران ایران

3 گروه مهندسی علوم خاک، دانشگاه تهران، صندوق پستی: 4111، کرج ایران

چکیده

کربن آلی خاک نقش مهمی در چرخه‌­ی کربن جهان داشته و مطالعه­‌ی پویایی آن با توسعه‌­ی صنعت هسته‌­ای همراه بوده است. جداسازی فیزیکی، عمرسنجی با کربن-14 و طیف­‌سنجی تبدیل فوریه­‌ی زیر قرمز (FTIR)، از روش‌­های معتبر در تعیین پویایی و اثرات کاربری اراضی بر کربن آلی خاک است. در این مطالعه، با استفاده از فن­‌آوری عمرسنجی کربن-14 و طیف‌­سنجی تبدیل فوریه­‌ی زیر قرمز همراه با جزء به جزء کردن فیزیکی مواد آلی، اثر سه کاربری جنگل پهن­برگ، سوزنی­برگ و مرتع بر متوسط زمان ماندگاری و کیفیت کربن آلی خاک بررسی شد. نتایج طیف‌­های تبدیل فوریه­‌ی زیر قرمز نشان داد که گروه­‌های عاملی حلقوی به مقدار بیش­تر و با تجزیه‌­ی کم­تر در جنگل سوزنی­برگ سبب افزایش کربن آلی خاک شده است. قطعات مواد آلی آزاد و درون خاک­‌دان‌ه­ای به عنوان شاخص حساس به کاربری اراضی شناسایی شدند. نسبت کربن آلیفاتیک به آروماتیک در بقایای گیاهی و بخش درون خاک­دان‌ه­ای جنگل پهن­برگ نسبت به سایر کاربری­‌ها بیش­‌تر است. در دو کاربری جنگل پهن­برگ و سوزنی­برگ حداکثر سن کربن-14 و متوسط زمان ماندگاری آن، در افق B بود، در حالی­که در مرتع، در افق A اندازه­‌گیری شد. گروه­‌های عاملی حلقوی همراه با سن کربن-14 شاخص مطمئنی برای مطالعه­‌ی فرایندهای تجزیه و هوموسی‌­شدن هستند.

تازه های تحقیق

  1. D. C. Olk and G. E. Gregorich, Overview of the symposium proceedings, meaningful pools in determining soil carbon and nitrogen dynamics, Soil Sci. Soc. Am. J. 70 (2006) 967–974.

 2.   K. Heckman, A. C. Welty-Bernard Rasmussen, E. Schwartz, Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy, Soil Till. Res. 104 (2009) 227–232.

 3.   F. Marzaioli, C. Lubritto, I. D. Galdo, A. D’Onofrio, M. F. Cotrufo, F. Terrasi, Comparison of different soil organic matter fractionation methodologies: Evidences from ultrasensitive 14C measurements, Nucl. Instru. Meth. Phy. Res. B, 268 (2010) 1062-1066.

 4.   Y. Wang and Y. P. Hsieh, Uncertainties and novel properties in the study of the carbon dynamics, Chemosphere 49 (2002) 791-804.

 5.   J. Rethemeyer, P. M. Grootes, F. Bruhn, N. Andersen, M. J. Nadeau, C. Kramer, G. Gleixner, Age heterogeneity of soil organic matter, Nucl. Instru. Meth. Phy. Res. B. 223–224 (2004) 521–527.

 6.   E. A. Paul, H. P. Collins, S. W. Leavitt, Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance, Geoderma, 104 (2001) 239–256.

  1. J. Leifeld and J. Fuhrer, Long-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon dating, Eur. J. Soil Sci. 60 (2009) 230–239.

 8.   J. Wu and A. G. O’Donnell, Procedure for the simultaneous analysis of total and radioactive carbon in soil and materials, Soil Biel. Biochem. 29 (1997) 199-202.

 9.   B. Majumder and Y. Kuzyakov, Effect of fertilization on decomposition of 14C labelled plant residues and their incorporation into soil aggregates, Soil. Till. Res. 109 (2010) 94–102.

 10.M. Molnár, K. Joó, A. Barczi, Z. Szántó, I. Futó, L. Palcsu, L. Rinyu, Dating of total soil organic matter used in Kurgan studies, Radiocarbon, 46 (2004) 413–419.

 11.F. Asghrizadeh, B. Salimi, M. Ghannadi Maraghe, A. Hocheghani, Determination of age the southern coast of Iran oyster samples with radiocarbon method, Journal of Nuclear Science and Technology, 45 (2008) 7-11.

 12.D. Ertlen, D. Schwartz, M. R. Trautmann, D. Brunet, Discriminating between organic matter in soil from grass and forest by near-infrared spectroscopy, Eur. J. Soil Sci. 61 (2010) 207–216.

 13.F. J. Stevenson, Humus chemistry: genesis, composition, reactions, John Wiley (1994).

 14.L. V. Verchot, L. Dutaur, K. D. Shepherd, A. Albrecht, Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils, Geoderma, 161 (2011) 182–193.

 15.D. Diehl, R. H. Ellerbrock, G. E. Schaumann, Influence of drying conditions on wet ability and DRIFT spectroscopic C–H band of soil samples, Eur. J. Soil Sci. 60 (2009) 557–566.

 16.G. Onweremadu, T. Osuji, I. Eshett, U. Oparah, C. Onwuliri, Soil carbon sequestration in aggregate size of a forested isohyperthermic Arenic Kandiudult, Thai J. Agric. Sci. 43(1) (2010) 9-15.

 17.E. Moghiseh, Assessing the effects of changes in forest land-use on soil carbon dynamics and lsotopic changes (Kelardasht, Mazandaran Province). Ph.D Thesis, Soil Science Department, University of Tehran (2012) (in Farsi).

 18.E. G. Gregorich, M. H. Beare, Physically uncomplexed Organic Matter, In: M. R. Carter and E. G. Gregorich (eds). Soil Sampling and Methods of Analysis, (2th Ed.), Taylor & Francis Group, LLC. Chapter, 47 (2008).

 19.J. D. Liao, T. W. Boutton, J. D. Jastrow, Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland, Soil Biol. Biochem. 38 (2006) 3184–3196.

20.G. Haberhauer, B. Rafferty, F. Strebl, M. H. Gerzabek, Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy, Geoderma, 83 (1998) 331-342.

 21.C. D. Shen, J. Beer, S. Ivy-Ochs, Y. Sun, W. Yi, P.W. Kubik, M. Suter, Z. Li, S. Peng, Y. Yang, 10Be, 14C distribution and soil production rate in a soil profile of a grassland slope at Heshan Hilly land Guangdong, Radiocarbon, 46 (2004) 445–454.

 22.M. Stuiver and H. Polach, Discussion reporting of 14C data, Radiocarbon 19, (1977) 355-363 (1977).

 23.S. Hilli, S. Stark, J. Derome, Carbon quality and stocks in organic horizons in boreal forest soils, Ecosystems, 11 (2008) 270–282.

 24.V. A. Kavvadias, D. Alifragis, A. Tsiontsis, G. Brofas, G. Stamatelos, Litter-fall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece, Forest. Ecol. Manage, 144 (2001) 113–127.

 25.J. Koarashi, T. Iida, T. Asano, Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest, J. Environ. Radioactivity. 79 (2005) 137–156.

 26.L. V. Antisari, S. Marinari, M. T. Dell'Abate, C. Baffi, G. Vianello, Plant cover and epipedon SOM stability as factors affecting brown soil profile development and microbial activity, Geoderma, 161 (2011) 212–224.

 27.J. Walcott, S. Bruce, J. Sims, Soil carbon for carbon sequestration and trading: a review of issues for agriculture and forestry, Bureau of Rural Sciences, Department of Agriculture, Fisheries & Forestry, Canberra (2009).

 28.B. M. Shrestha, B. K. Sitaula, B. R. Singh, R. M. Bajracharya, Soil organic carbon stocks in soil aggregates under different land use systems in Nepal, Nutr. Cycle. Agroecosyst, 70 (2004) 201-213.

 29.M. Von Lützow, I. Kögel-Knabner, B. Ludwig, E. Matzner, H. Flessa, K. Ekschmitt, G. Guggenberger, B. Marschner, K. Kalbitz, Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model, J. Plant. Nutr. Soil. Sci. 171 (2008) 111-124.

 30.C. Rumpel, I. Kögel-Knabner, F. Bruhn, Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis, Org. Geochem. 33 (2002) 1131–1142.

 31.F. Favilli, M. Egli, P. Cherubini, G. Sartori, W. Haeberli, E. Delbos, Comparison of different methods of obtaining a resilient organic matter fraction in Alpine soils, Geoderma, 145 (2008) 355–369.

 32.Z. Tan, R. Lal, L. Owens, R. C. Izaurralde, Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice, Soil Till. Res. 92 (2007) 53–59.

 33.P. Puget, C. Chenu, J. Balesdent, Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates, Eur. J. Soil Sci. 51 (2000) 595–605.

 34.J. Luan, Sh. Liu, J. Wang, X. Zhu, Z. Shi, Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China, Soil Biol. Biochem. 43 (2011) 503-512.

 35.R. Wagai, L. M. Mayer, K. Kitatama, Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Sci. Plant. Nutr. 55 (2009) 13–25.

 36.J. Six and J. D. Jastrow, Organic matter turnover, In: R. Lal (Ed.), Encyclopedia of Soil Science. Marcel Dekker, New York (2006) 936–942.

کلیدواژه‌ها


عنوان مقاله [English]

Impacts of Land Use on Variations of Soil 14C-Age and Determination of Organic Matter Quality by FTIR Spectrometry

نویسندگان [English]

  • E Moghiseh 1
  • M Ghannadi Maragheh 2
  • A Heidari 3
چکیده [English]

Soil organic carbon (SOC) plays an important role in the global carbon cycle, and study of dynamics concerns the recent development of nuclear industry. Physical fractionation, radiocarbon dating and FTIR spectrometry methods are among the most important methods for determining carbon dynamics and thereby the magnitude of soil carbon response to land uses. In this study, methodologies of carbon dating and FTIR spectrometry were used to characterize impacts of land use on mean residence times and quality (functional groups) of soil organic carbon based on physical fractionation methods in three land uses including deciduous, coniferous forests and rangelands. The FTIR spectra showed that higher aromatic carbon proportion and its lower decay rate of organic matter in coniferous forest have caused more SOC content. Free and intra-aggregates particulate organic matters (POM) have been recognized as criterion indices for deciduous forest use. Compared to the other land uses, the higher aliphatic to aromatic carbon ratios were obtained in litter and intra-aggregates POM of deciduous forest. The highest14C age in both forest land uses (deciduous and coniferous) was measured in the Bhorizon, while in the rangeland occurred at the A horizon. Aromatic functional groups as well as 14C age are suitable parameters for homification processes.
 

کلیدواژه‌ها [English]

  • Soil Organic Carbon
  • Land Use
  • FTIR Spectrometry
  • Physical Fractionation
  • 14C Dating
  1. D. C. Olk and G. E. Gregorich, Overview of the symposium proceedings, meaningful pools in determining soil carbon and nitrogen dynamics, Soil Sci. Soc. Am. J. 70 (2006) 967–974.

 2.   K. Heckman, A. C. Welty-Bernard Rasmussen, E. Schwartz, Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy, Soil Till. Res. 104 (2009) 227–232.

 3.   F. Marzaioli, C. Lubritto, I. D. Galdo, A. D’Onofrio, M. F. Cotrufo, F. Terrasi, Comparison of different soil organic matter fractionation methodologies: Evidences from ultrasensitive 14C measurements, Nucl. Instru. Meth. Phy. Res. B, 268 (2010) 1062-1066.

 4.   Y. Wang and Y. P. Hsieh, Uncertainties and novel properties in the study of the carbon dynamics, Chemosphere 49 (2002) 791-804.

 5.   J. Rethemeyer, P. M. Grootes, F. Bruhn, N. Andersen, M. J. Nadeau, C. Kramer, G. Gleixner, Age heterogeneity of soil organic matter, Nucl. Instru. Meth. Phy. Res. B. 223–224 (2004) 521–527.

 6.   E. A. Paul, H. P. Collins, S. W. Leavitt, Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance, Geoderma, 104 (2001) 239–256.

  1. J. Leifeld and J. Fuhrer, Long-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon dating, Eur. J. Soil Sci. 60 (2009) 230–239.

 8.   J. Wu and A. G. O’Donnell, Procedure for the simultaneous analysis of total and radioactive carbon in soil and materials, Soil Biel. Biochem. 29 (1997) 199-202.

 9.   B. Majumder and Y. Kuzyakov, Effect of fertilization on decomposition of 14C labelled plant residues and their incorporation into soil aggregates, Soil. Till. Res. 109 (2010) 94–102.

 10.M. Molnár, K. Joó, A. Barczi, Z. Szántó, I. Futó, L. Palcsu, L. Rinyu, Dating of total soil organic matter used in Kurgan studies, Radiocarbon, 46 (2004) 413–419.

 11.F. Asghrizadeh, B. Salimi, M. Ghannadi Maraghe, A. Hocheghani, Determination of age the southern coast of Iran oyster samples with radiocarbon method, Journal of Nuclear Science and Technology, 45 (2008) 7-11.

 12.D. Ertlen, D. Schwartz, M. R. Trautmann, D. Brunet, Discriminating between organic matter in soil from grass and forest by near-infrared spectroscopy, Eur. J. Soil Sci. 61 (2010) 207–216.

 13.F. J. Stevenson, Humus chemistry: genesis, composition, reactions, John Wiley (1994).

 14.L. V. Verchot, L. Dutaur, K. D. Shepherd, A. Albrecht, Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils, Geoderma, 161 (2011) 182–193.

 15.D. Diehl, R. H. Ellerbrock, G. E. Schaumann, Influence of drying conditions on wet ability and DRIFT spectroscopic C–H band of soil samples, Eur. J. Soil Sci. 60 (2009) 557–566.

 16.G. Onweremadu, T. Osuji, I. Eshett, U. Oparah, C. Onwuliri, Soil carbon sequestration in aggregate size of a forested isohyperthermic Arenic Kandiudult, Thai J. Agric. Sci. 43(1) (2010) 9-15.

 17.E. Moghiseh, Assessing the effects of changes in forest land-use on soil carbon dynamics and lsotopic changes (Kelardasht, Mazandaran Province). Ph.D Thesis, Soil Science Department, University of Tehran (2012) (in Farsi).

 18.E. G. Gregorich, M. H. Beare, Physically uncomplexed Organic Matter, In: M. R. Carter and E. G. Gregorich (eds). Soil Sampling and Methods of Analysis, (2th Ed.), Taylor & Francis Group, LLC. Chapter, 47 (2008).

 19.J. D. Liao, T. W. Boutton, J. D. Jastrow, Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland, Soil Biol. Biochem. 38 (2006) 3184–3196.

20.G. Haberhauer, B. Rafferty, F. Strebl, M. H. Gerzabek, Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy, Geoderma, 83 (1998) 331-342.

 21.C. D. Shen, J. Beer, S. Ivy-Ochs, Y. Sun, W. Yi, P.W. Kubik, M. Suter, Z. Li, S. Peng, Y. Yang, 10Be, 14C distribution and soil production rate in a soil profile of a grassland slope at Heshan Hilly land Guangdong, Radiocarbon, 46 (2004) 445–454.

 22.M. Stuiver and H. Polach, Discussion reporting of 14C data, Radiocarbon 19, (1977) 355-363 (1977).

 23.S. Hilli, S. Stark, J. Derome, Carbon quality and stocks in organic horizons in boreal forest soils, Ecosystems, 11 (2008) 270–282.

 24.V. A. Kavvadias, D. Alifragis, A. Tsiontsis, G. Brofas, G. Stamatelos, Litter-fall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece, Forest. Ecol. Manage, 144 (2001) 113–127.

 25.J. Koarashi, T. Iida, T. Asano, Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest, J. Environ. Radioactivity. 79 (2005) 137–156.

 26.L. V. Antisari, S. Marinari, M. T. Dell'Abate, C. Baffi, G. Vianello, Plant cover and epipedon SOM stability as factors affecting brown soil profile development and microbial activity, Geoderma, 161 (2011) 212–224.

 27.J. Walcott, S. Bruce, J. Sims, Soil carbon for carbon sequestration and trading: a review of issues for agriculture and forestry, Bureau of Rural Sciences, Department of Agriculture, Fisheries & Forestry, Canberra (2009).

 28.B. M. Shrestha, B. K. Sitaula, B. R. Singh, R. M. Bajracharya, Soil organic carbon stocks in soil aggregates under different land use systems in Nepal, Nutr. Cycle. Agroecosyst, 70 (2004) 201-213.

 29.M. Von Lützow, I. Kögel-Knabner, B. Ludwig, E. Matzner, H. Flessa, K. Ekschmitt, G. Guggenberger, B. Marschner, K. Kalbitz, Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model, J. Plant. Nutr. Soil. Sci. 171 (2008) 111-124.

 30.C. Rumpel, I. Kögel-Knabner, F. Bruhn, Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis, Org. Geochem. 33 (2002) 1131–1142.

 31.F. Favilli, M. Egli, P. Cherubini, G. Sartori, W. Haeberli, E. Delbos, Comparison of different methods of obtaining a resilient organic matter fraction in Alpine soils, Geoderma, 145 (2008) 355–369.

 32.Z. Tan, R. Lal, L. Owens, R. C. Izaurralde, Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice, Soil Till. Res. 92 (2007) 53–59.

 33.P. Puget, C. Chenu, J. Balesdent, Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates, Eur. J. Soil Sci. 51 (2000) 595–605.

 34.J. Luan, Sh. Liu, J. Wang, X. Zhu, Z. Shi, Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China, Soil Biol. Biochem. 43 (2011) 503-512.

 35.R. Wagai, L. M. Mayer, K. Kitatama, Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Sci. Plant. Nutr. 55 (2009) 13–25.

 36.J. Six and J. D. Jastrow, Organic matter turnover, In: R. Lal (Ed.), Encyclopedia of Soil Science. Marcel Dekker, New York (2006) 936–942.