بازیابی عناصر خاکی نادر از محلول فروشویی کنسانتره‌ی آپاتیت ایران مرکزی با استفاده از ترکیب دو روش رسوب‌گیری و استخراج با حلال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه آزاد واحد علوم و تحقیقات، صندوق پستی: 143-14115، تهران ـ ایران

چکیده

استحصال و پرعیارسازی‌عناصرخاکی­ نادر (به نمایندگی لانتانیم، سریم، نئودیمیم و ایتریم) از محلول فروشویی کنسانتره­‌ی آپاتیت ایران مرکزی با استفاده از ترکیب دو روش رسوب‌­گیری برای حذف یون­‌های مزاحم و استخراج حلالی برای جداسازی و تغلیظ عناصر خاکی نادر به وسیله­‌ی حلال آلی تری بوتیل فسفات (TBP) مورد بررسی آزمایشگاهی قرار گرفت. مطالعات پراش پرتو ایکس (XRD) نمونه‌­ی نماینده­‌ی کنسانتره‌­ی آپاتیت نشان داد که کانی­‌های تشکیل­‌دهنده­ی آن شامل فلورو­آپاتیت، آنکریت و کلسیت بود که در بین آن­ها فلورو آپاتیت، کانی غالب است. مطالعات فلوئورسانی پرتو ایکس (XRF) حاکی از آن است که اکسید عناصر خاکی­ نادر ایتریم، سریم، لانتانیم، پرازئودیمیم و نئودیمیم حدود 0.9 درصد از کل ترکیب شیمیایی را به خود اختصاص داده‌­اند. SiO2, CaO, Fe2O3 و P2O5 دیگر ترکیبات با اهمیت کنسانتره‌­ی آپاتیت هستند. ابتدا عملیات فروشویی اسیدی، با نیتریک اسید انجام شد. تجزیه­‌ی عنصری محلول حاصل از فروشویی اسیدی نشان داد که علاوه بر خاکی­‌های نادر، یون‌­های مزاحمی چون  Fe(II), Mg(II), Ca(II), S(IV), P(V) و F(I) نیز در محلول وجود دارند. بررسی فرایند رسوب­‌گیری نشان داد که رسوب­‌گیری سریع در سانتریفوژ، از کارآیی خوبی در حذف و یا دست­کم در کاهش این یون­‌های مزاحم بدون حذف قابل ملاحظه­‌ی عناصر خاکی نادر برخوردار است. تأثیر متغیرهای غلظت استخراج­‌کننده، غلظت نیتریک اسید، دما، زمان تماس، نسبت فازها، Vorg./Vaq ، بررسی و شرایط بهینه برای عملکرد استخراج­‌کننده­یTBPبرای جداسازی لانتانیدها تعیین شد. عریان­‌سازی انتخابی فاز آلی باردار از لانتانیدها با استفاده از نیتریک اسید مورد بررسی قرار گرفت. میزان بازیابی لانتانیدها از محلول فروشویی کنسانتره­‌ی آپاتیت بیش از 90 درصد تعیین شد. پارامترهای ترمودینامیکی فرایند استخراج لانتانیدها محاسبه شدند.

تازه های تحقیق

  1. K. M. Franken, A roast-leach process for extraction of rare earth from complex monazite-xenotime concentrates, Sep. Sci. and Tech, 30 (1995).

 2.   Karl A Gschneidner, Rare earths; the fraternal fifteen, U.S. Atomic Energy Commission Division of Technical Information (1964).

 3.   A. Bagherieh, Determination of Rare Earth Elements in Products of Chadormalu Iron Ore Concentrator Plant, Master Degree Thesis, Islamic Azad University, Science and Research Branch-Tehran, 17-18 (2006) 41-57.

 4.   C. Gupta, N. Krishnamurthy, Extractive metallurgy of rare earths, CRC Press INC (2005).

 5.   C. Koopman, G. J. Witkamp, Ion exchange extraction during continious recrystallization of CaSO4 in the phosphoric acid production process: Lanthanide extraction efficiency and CaSO4 particle shap, Hydrometallurgy, 63 (2002) 51-60.

 6.   S. Radhika, B. Nagaphani Kumar, M. Lakshmi Kantam, B. Ramachandra Reddy, Solvent extraction and separation of rare earts from phosphoric acid solutions with TOPS 99, Hydrometallurgy, 110 (2011) 50-55.

 7.   D. Fontana, L. Pietrelli, Separation of middle rare earths by solvent extraction using 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant, J. of Rare Earths, 27 (2009) 830.

 8.   H. Li, F. Guo, Z. Zhang, D. Li, Z. Wang, A new hydrometallurgical process for extracting rare earths from apatite using solvent extraction with P350, J. of Alloys and Compounds, 408-412 (2006) 995- 998.

 9.   M. Monir, A. Nabawia, A. Mohammed, Recovery of lanthanids from abu tartur phosphate rock, Egypt, Hydrometallurgy, 52 (1999) 199.

 10.C. A. Morias, V. S. T. Ciminelli, Recovery of Europium from rare earth chloride solution, Hydrometallurgy, 49 (1998) 176.

11.R. Chi, X. Zhang, G. Zhu, Z. A. Zhou, W. Wu, C. Wang, Recovery of rare earth from bastnasite by ammonium chloride roasting with fluorine desactivation, Minerals Engineering, 17 (2004) 1037.

 12.A. Bhattacharyya, P. K. Mohapatra, S. A. Ansari, D. R. Raut, V. K. Manchanda, Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier, Journal of Membrane Science 312 (2008) 1–5.

 13.I. L. Dukov, V. M. Jordanov, Synergistic solvent extraction of lanthanides with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one and aliphatic amines: influence of the ammonium salt ions, Monatshefte für Chemie/ Chemical Monthly, 127 (1996) 1109-1114.

 14.S. Inoue, Q. Zhang, M. Uto, Solvent extraction of lanthanides(III) with N-p-Phenylbenzoyl-N-phenylhydroxylamine, Solvent Extraction and Ion Exchange, 22 (2004) 121–133.

 15.Y. Komatsu, H. Freiser, Extraction separation of trivalent lanthanide metals with bis(2,4,4-trimethylpentyl) phosphoric acid, Analytica Chimica Acta, 222 (1989) 397-404.

 16.Li Ke-an, H. Freiser, Extraction of lanthanide metals with bis (2,4,4-trimethylpentyl) phosphinic acid, Solvent Extraction and Ion Exchange, 4 (1986) 739-755.

 17.W. Li, X. Wang, H. Zhang, S. Meng, D. Li, Solvent extraction of lanthanides and yttrium from nitrate medium with Cyanex 925 in heptane, Journal of Chemical Technology & Biotechnology, 82 (2007) 376-381.

 18.J. W. Mitchel, C. V. Banks, Synergic solvent extraction of lanthanides with mixtures of aliphatic fluorinated [beta]-diketones and organophosphorus donors, Talanta, 19 (1972) 1157–1169.

 19.E. O. Otu, Alan D. Westland, Liquid–liquid extraction of some MII and MIII ions with 2-ethylhexylhydrogenphenylphosphonate, Polyhedron, 8 (1989) 1307-1313.

 20.E. O. Otu, Allan D. Westland, Solvent extraction with organophosphonic monoacidic esters, Solvent Extraction and Ion Exchange, 8 (1990) 759-781.

 21.D. F. Peppard, G. W. Mason, J. L. Maier, W. J. Driscoll, Fractional extraction of the lanthanides as their di-alkyl orthophosphates, Journal of Inorganic and Nuclear Chemistry, 4 (1957) 334–343.

 22.D. F. Peppard, Progress in the Science and Technology of Rare Earths, in: L. Eyring (Ed.), Pergamon, Oxford, Oxford, (1964) 89-108.

 23.J. S. Preston, A. C. Du Preez, Solvent extraction of the trivalent lanthanides and yttrium by mixtures of 3,5-diisopropylsalicylic acid and neutral organophosphorus compounds, Journal of Chemical Technology & Biotechnology, 60 (1994) 317-325.

 24.B. S. Shaibu, M. L. P. Reddy, A. Bhattacharyya, V. K. Manchanda, Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams, Journal of Magnetism and Magnetic Materials, 301 (2006) 312-318.

 25.K. Shimojo, Solvent extraction of lanthanides into an ionic liquid containing N,N,N0,N0-Tetrakis (2-pyridylmethyl) ethylenediamine, Chemistry Letters, 35 (2006) 484–485.

 26.J. Tang, C. M. Wai, Solvent extraction of lanthanides with a crown ether carboxylic acid, Analytical Chemistry, 58 (1986) 3233–3235.

 27.J. S. Preston, A. C. Du Preez, Handbook on the physics and chemistry of rare earths, Amsterdam 883-894 (1990).

 28.J. Rydberg, M. Cox, C. Musikas, G. M. Chopping, Solvent extraction principles and practice, second edition, Marcel Dekker Inc, (2004).

29.Q. Jia, Z. Li, W. Zhou, W. H. Li, Studies on the solvent extraction of rare earths from nitrate media with a combination of di-(2-ethylhexyl) phosphoric acid and secoctylphenoxyacetic acid, Wiley Intersci. Pub., www.interscience.wiley.com, (2008) 565-569.

 30.J. Kraikaew, W. Srinuttakul, Batch simulation of rare earths extractive separation by di (2-ethyl-hexyl) phosphoric acid and Tributylphosphate in kerosene, Min. Met. Mat., S 14 (2004) 79-88.

 31.G. R. Choppin, C. Musikas, J. Rydberg, T. Sekine, Solvent extraction principle and practice, Marcel Dekker Inc., New York (2004).

 32.O. A. E. N. Desouky, Liquid-Liquid Extraction of Rare Earth Elements From Sulfuric Acid Solutions, Ph.D. thesis, University of Leeds, United Kingdom, (2006) 30-107.

 33.S. A. Milani, M. Eskandari Nasab, Extractive Separation of Thorium, Uranium and Rare Earths from Nitrate Medium by Cyanex272, Nuclear Science and Technology, 63 (2013) 20-31.

 34.S. B. SavvinOrganic Reagents of the Arsenazo III Group, Atomizdat,. Moscow (197 1).

 35.YoushaoSChaohongSGuoxinZJiankang, BBorongPro. of the. IntConf on uranium extractionChina (199684.

 36.S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the plam tree, Int. J. Env. Sci. Tech. 4 (2007) 11-17.

 37.S. Binczyydka, H. Hafner, Crystal chemistry of europium in feldspare, Acta Crystalloger, A43 (1987).

کلیدواژه‌ها


عنوان مقاله [English]

Recovery of Rare Earth Elements from Leach Liquor of Apatite Concentrate of Central Iran Using Combined Precipitation and Solvent Extraction Methods

نویسندگان [English]

  • S A. Milani 1
  • B. E Farahmand 2
  • B Maraghe Mianji 1
چکیده [English]

The extraction and concentration of rare earths from leach liquor of apatite concentrate of central Iran were investigated using combined precipitation and solvent extraction methods. Precipitation was carried out to remove undesirable ions and solvent extraction method using tri-n-butyl-phosphate (TBP) as an extractant was employed to separate and concentrate rare earth elements. The XRD studies demonstrated that fluro-apatite, ancrite and calcite are the comprising minerals in the examined mica (apatite) and fluro-apatite is the predominant mineral. The amount of rare earth element-oxides including Y, Ce, La, Pr and Nd were determined by means of X-ray florescence (XRF) analysis. The other chemical composition of apatite consists of: SiO2, CaO, Fe2O3 and P2O5. First, acid leaching operation was carried out by using nitric acid. The analytical investigation of the obtained leach liquor indicated that interfering ions include: Fe(II), Mg(II), Ca(II), S(IV), P(V) and F(I). The precipitation studies confirmed that the process was  rapid and highly efficient to remove the interfering ions without removing rare earth elements. The effect of different variables such as extractant concentration, nitric acide concentration, temperature, contact time and Vorg./Vaq. were investigated and the optimum conditions for separation of lanthanides by TBP were determined. Selective stripping of lanthanides from the loaded organic phase were studied using nitric acid. The separation of rare earths by TBP was observed to be significant and more than 90 percent of rare earth elements were extracted. The thermodynamic functions of lanthanides extraction process have been calculated.

کلیدواژه‌ها [English]

  • Rare earth elements
  • Lanthanids
  • Apatite Concentrate
  • Solvent extraction
  • Central Iran
  1. K. M. Franken, A roast-leach process for extraction of rare earth from complex monazite-xenotime concentrates, Sep. Sci. and Tech, 30 (1995).

 2.   Karl A Gschneidner, Rare earths; the fraternal fifteen, U.S. Atomic Energy Commission Division of Technical Information (1964).

 3.   A. Bagherieh, Determination of Rare Earth Elements in Products of Chadormalu Iron Ore Concentrator Plant, Master Degree Thesis, Islamic Azad University, Science and Research Branch-Tehran, 17-18 (2006) 41-57.

 4.   C. Gupta, N. Krishnamurthy, Extractive metallurgy of rare earths, CRC Press INC (2005).

 5.   C. Koopman, G. J. Witkamp, Ion exchange extraction during continious recrystallization of CaSO4 in the phosphoric acid production process: Lanthanide extraction efficiency and CaSO4 particle shap, Hydrometallurgy, 63 (2002) 51-60.

 6.   S. Radhika, B. Nagaphani Kumar, M. Lakshmi Kantam, B. Ramachandra Reddy, Solvent extraction and separation of rare earts from phosphoric acid solutions with TOPS 99, Hydrometallurgy, 110 (2011) 50-55.

 7.   D. Fontana, L. Pietrelli, Separation of middle rare earths by solvent extraction using 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant, J. of Rare Earths, 27 (2009) 830.

 8.   H. Li, F. Guo, Z. Zhang, D. Li, Z. Wang, A new hydrometallurgical process for extracting rare earths from apatite using solvent extraction with P350, J. of Alloys and Compounds, 408-412 (2006) 995- 998.

 9.   M. Monir, A. Nabawia, A. Mohammed, Recovery of lanthanids from abu tartur phosphate rock, Egypt, Hydrometallurgy, 52 (1999) 199.

 10.C. A. Morias, V. S. T. Ciminelli, Recovery of Europium from rare earth chloride solution, Hydrometallurgy, 49 (1998) 176.

11.R. Chi, X. Zhang, G. Zhu, Z. A. Zhou, W. Wu, C. Wang, Recovery of rare earth from bastnasite by ammonium chloride roasting with fluorine desactivation, Minerals Engineering, 17 (2004) 1037.

 12.A. Bhattacharyya, P. K. Mohapatra, S. A. Ansari, D. R. Raut, V. K. Manchanda, Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier, Journal of Membrane Science 312 (2008) 1–5.

 13.I. L. Dukov, V. M. Jordanov, Synergistic solvent extraction of lanthanides with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one and aliphatic amines: influence of the ammonium salt ions, Monatshefte für Chemie/ Chemical Monthly, 127 (1996) 1109-1114.

 14.S. Inoue, Q. Zhang, M. Uto, Solvent extraction of lanthanides(III) with N-p-Phenylbenzoyl-N-phenylhydroxylamine, Solvent Extraction and Ion Exchange, 22 (2004) 121–133.

 15.Y. Komatsu, H. Freiser, Extraction separation of trivalent lanthanide metals with bis(2,4,4-trimethylpentyl) phosphoric acid, Analytica Chimica Acta, 222 (1989) 397-404.

 16.Li Ke-an, H. Freiser, Extraction of lanthanide metals with bis (2,4,4-trimethylpentyl) phosphinic acid, Solvent Extraction and Ion Exchange, 4 (1986) 739-755.

 17.W. Li, X. Wang, H. Zhang, S. Meng, D. Li, Solvent extraction of lanthanides and yttrium from nitrate medium with Cyanex 925 in heptane, Journal of Chemical Technology & Biotechnology, 82 (2007) 376-381.

 18.J. W. Mitchel, C. V. Banks, Synergic solvent extraction of lanthanides with mixtures of aliphatic fluorinated [beta]-diketones and organophosphorus donors, Talanta, 19 (1972) 1157–1169.

 19.E. O. Otu, Alan D. Westland, Liquid–liquid extraction of some MII and MIII ions with 2-ethylhexylhydrogenphenylphosphonate, Polyhedron, 8 (1989) 1307-1313.

 20.E. O. Otu, Allan D. Westland, Solvent extraction with organophosphonic monoacidic esters, Solvent Extraction and Ion Exchange, 8 (1990) 759-781.

 21.D. F. Peppard, G. W. Mason, J. L. Maier, W. J. Driscoll, Fractional extraction of the lanthanides as their di-alkyl orthophosphates, Journal of Inorganic and Nuclear Chemistry, 4 (1957) 334–343.

 22.D. F. Peppard, Progress in the Science and Technology of Rare Earths, in: L. Eyring (Ed.), Pergamon, Oxford, Oxford, (1964) 89-108.

 23.J. S. Preston, A. C. Du Preez, Solvent extraction of the trivalent lanthanides and yttrium by mixtures of 3,5-diisopropylsalicylic acid and neutral organophosphorus compounds, Journal of Chemical Technology & Biotechnology, 60 (1994) 317-325.

 24.B. S. Shaibu, M. L. P. Reddy, A. Bhattacharyya, V. K. Manchanda, Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams, Journal of Magnetism and Magnetic Materials, 301 (2006) 312-318.

 25.K. Shimojo, Solvent extraction of lanthanides into an ionic liquid containing N,N,N0,N0-Tetrakis (2-pyridylmethyl) ethylenediamine, Chemistry Letters, 35 (2006) 484–485.

 26.J. Tang, C. M. Wai, Solvent extraction of lanthanides with a crown ether carboxylic acid, Analytical Chemistry, 58 (1986) 3233–3235.

 27.J. S. Preston, A. C. Du Preez, Handbook on the physics and chemistry of rare earths, Amsterdam 883-894 (1990).

 28.J. Rydberg, M. Cox, C. Musikas, G. M. Chopping, Solvent extraction principles and practice, second edition, Marcel Dekker Inc, (2004).

29.Q. Jia, Z. Li, W. Zhou, W. H. Li, Studies on the solvent extraction of rare earths from nitrate media with a combination of di-(2-ethylhexyl) phosphoric acid and secoctylphenoxyacetic acid, Wiley Intersci. Pub., www.interscience.wiley.com, (2008) 565-569.

 30.J. Kraikaew, W. Srinuttakul, Batch simulation of rare earths extractive separation by di (2-ethyl-hexyl) phosphoric acid and Tributylphosphate in kerosene, Min. Met. Mat., S 14 (2004) 79-88.

 31.G. R. Choppin, C. Musikas, J. Rydberg, T. Sekine, Solvent extraction principle and practice, Marcel Dekker Inc., New York (2004).

 32.O. A. E. N. Desouky, Liquid-Liquid Extraction of Rare Earth Elements From Sulfuric Acid Solutions, Ph.D. thesis, University of Leeds, United Kingdom, (2006) 30-107.

 33.S. A. Milani, M. Eskandari Nasab, Extractive Separation of Thorium, Uranium and Rare Earths from Nitrate Medium by Cyanex272, Nuclear Science and Technology, 63 (2013) 20-31.

 34.S. B. SavvinOrganic Reagents of the Arsenazo III Group, Atomizdat,. Moscow (197 1).

 35.YoushaoSChaohongSGuoxinZJiankang, BBorongPro. of the. IntConf on uranium extractionChina (199684.

 36.S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the plam tree, Int. J. Env. Sci. Tech. 4 (2007) 11-17.

 37.S. Binczyydka, H. Hafner, Crystal chemistry of europium in feldspare, Acta Crystalloger, A43 (1987).