شبیه‌سازی مونت‌کارلوی جذب آلاینده‌های خروجی از واحدهای فرآوری شیمیایی اورانیم به وسیله‌ی غشای نانولوله‌ی کربنی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 دانشکده ی مهندسی شیمی، دانشگاه صنعتی امیرکبیر، صندوق پستی: 4413-15875، تهران ـ ایران

چکیده

غشاهای نانولوله‌ی کربنی به دلیل خواص منحصربه‌فرد خود می‌توانند در جذب و جداسازی ترکیب‌ها تحول شگرفی را ایجاد کنند. جذب آلاینده‌های حاصل از واحدهای فرآوری شیمیایی اورانیم یکی از مهم‌ترین مسایل زیست محیطی در این صنعت است. لذا به منظور بررسی کارآیی غشاهای نانولوله‌ی کربنی در جذب ترکیب‌های حاصل از واحدهای فرآوری شیمیایی اورانیم، جذب دما ثابت آلاینده‌های 2UO، 2F، 6UF، 4UF و 2F2UO بر روی نانولوله‌های کربنی از طریق شبیه‌سازی مونت‌کارلو مورد مطالعه و بررسی قرار گرفت. در این مطالعه تأثیر فشار و اندازه‌ی قطر نانولوله‌ی کربنی بر جذب نیز مورد مطالعه قرار گرفت. نتایج نشان داد که جذب درون نانولوله‌های کربنی به صورت 2F > 6UF > 2F2UO > 4UF > 2UO است. به عبارت دیگر، بیش‌ترین و کم‌ترین مقدار جذب درون نانولوله‌های کربنی، به ترتیب، مربوط به 2UO و گاز 2F است. هم‌چنین بررسی تأثیر فشار و قطر نانولوله بر میزان جذب نشان داد که با افزایش فشار و قطر نانولوله میزان جذب تمامی مواد افزایش می‌یابد و میزان تأثیر فشار به قطر نانولوله‌ی کربنی و نوع گاز بستگی دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Monte Carlo Simulation of Adsorption of Pollutants Emitted from Uranium Chemical Processing Units Using Carbon Nanotube Membrane

نویسندگان [English]

  • Alireza Keshtkar 1
  • Mahmoud Rahmati 2
چکیده [English]

The carbon nanotube membranes which have unique properties can make dramatic changes in adsorption and separation of compounds. Adsorption of pollutants from uranium chemical processing units is one of the most important environmental issues in this industry. Therefore, the adsorption isotherms of UO2, F2, UF6, UF4 and UO2F2 into carbon nanotube were studied by using the Monte Carlo simulation in order to evaluate the performance of carbon nanotubes membranes in the uptake of compounds of uranium chemical processing units. Also in this study, the effects of pressure and diameter of the carbon nanotubes on the adsorption of compounds were investigated. The results indicate that the adsorption of compounds onto the carbon nanotubes is as follows: UO2 > UF4 > UO2F2 > UF6 > F2. In other words, the maximum and minimum adsorption onto the carbon nanotubes are related to UO2 and F2, respectively. The effects of pressure and diameter of the carbon nanotubes on the adsorption of compounds show that the adsorption isotherm of all gases increases with increasing pressure and diameter of the nanotubes and the pressure influence on the adsorption of the compounds depends on the type of component and the carbon nanotubes diameter.
 
 

کلیدواژه‌ها [English]

  • Adsorption
  • Carbon Nanotubes
  • Monte Carlo Simulation
  • Uranium Processing Polluents

1. A. Sadighzadeh, M. Rostami, S. Sana, Study of Gaseous Pollutants Purification and Filtration System of Uranium Conversion Facility (UCF), J. Nuclear Sci. Tech. 51 (2010) 63-69.

2. M.G. Ahunbay, O. Karvan, A. Erdem-Senatalar, MTBE Adsorption and Diffusion in Silicalite-1, Micropor. Mesopor. Mat. 115 (2008) 93-97.

3. Cruz FJAL, Esteves IAAC, Agnihotri S, J.P.B. Mota, Adsorption Equilibria of Light Organics on Single-Walled Carbon Nanotube Heterogeneous Bundles: Thermodynamical Aspects, J. Phys. Chem. C 115 (2011) 2622-2629.

4. L.J. Dunne, A. Furgani, S. Jalili, G. Manos, Monte-Carlo Simulations of Methane/Carbon Dioxide and Ethane/Carbon Dioxide Mixture Adsorption in Zeolites and Comparison with Matrix Treatment of Statistical Mechanical Lattice Model, Chem. Phys. 359 (2009) 27-30.

5. M. Foroutan, A.T. Nasrabadi, Adsorption Behavior of Ternary Mixtures of Noble Gases Inside Single-Walled Carbon Nanotube Bundles, Chem. Phys. Lett. 497 (2010) 213-217.

6. L. Huang, L. Zhang, Q. Shao, L. Lu, X. Lu, S. Jiang, W. Shen, Simulations of Binary Mixture Adsorption of Carbon Dioxide and Methane in Carbon Nanotubes: Temperature, Pressure, and Pore Size Effects, J. Phys. Chem. C, 111 (2007) 11912-11920.

7. A.V.A. Kumar, H. Jobic, S.K. Bhatia, Quantum Effects on Adsorption and Diffusion of Hydrogen and Deuterium in Microporous Materials, J. Phys. Chem. B, 110 (2006) 16666-16671.

8. M. Rahmati, H. Modarress, Nitrogen Adsorption on Nanoporous Zeolites Studied by Grand Canonical Monte Carlo Simulation, J. Mol. Struct. (Theochem) 901 (2009) 110-116.

9. M. Rahmati, H. Modarress, Grand Canonical Monte Carlo Simulation of Isotherm for Hydrogen Adsorption on Nanoporous Siliceous Zeolites at Room Temperature, Applied Surface Science, 255 (2009) 4773-4778.
10. D. Cao, W. Wang, Storage of Hydrogen in Single-Walled Carbon Nanotube Bundles with Optimized Parameters: Effect of External Surfaces, Int. J. Hydrogen Energy, 32 (2007) 1939-1942.

11. H. Chen, D.S. Sholl, Predictions of Selectivity and Flux for CH4/H2 Separations Using Single Walled Carbon Nanotubes as Membranes, J. Membrane Sci. 269 (2006) 152-160.

12. Y.L. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang, K.C. Hwang, Mechanics of Hydrogen Storage in Carbon Nanotubes, J. Mech. Phys. Solids, 56 (2008) 3224-3241.

13. C. Gu, G.H. Gao, Y.X. Yu, T. Nitt, Simulation for Separation of Hydrogen and Carbon Monoxide by Adsorption on Single-Walled Carbon Nanotubes, Fluid Phase Equilibr. 194-197 (2002) 297-307.

14. G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, Adsorption of N2, CH4, CO and CO2 Gases in Single Walled Carbon Nanotubes: A Combined Experimental and Monte Carlo Molecular Simulation Study, J. Supercrit. Fluids 55 (2010) 510-523.

15. M. Rzepka, P. Lamp, M.A. delaCasa-Lillo, Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes, J. Phys. Chem. B 102 (1998) 10894-10898.

16. X. Zhang, D. Cao, J. Chen, Hydrogen Adsorption Storage on Single-Walled Carbon Nanotube Arrays by a Combination of Classical Potential and Density Functional Theory, J. Phys. Chem. B, 107 (2003) 4942-4950.

17. X. Zhang, X. Shao, W. Wang, D. Cao, Molecular Modeling of Selectivity of Single-Walled Carbon Nanotube and MCM-41 for Separation of Methane and Carbon Dioxide, Sep. Purif. Technol. 74 (2010) 280-287.

18. L. Lu, Q. Shao, L. Huang, X. Lu, Simulation of Adsorption and Separation of Ethanol–Water Mixture with Zeolite and Carbon Nanotube, Fluid Phase Equilibr. 261 (2007) 191-198.

19. Y. Zeng, X. Zhu, Y. Yuan, X. Zhang, S. Ju, Molecular Simulations for Adsorption and Separation of Thiophene and Benzene in Cu-BTC and IRMOF-1 Metal–Organic Frameworks, Sep. Purif. Technol. 95 (2012) 149-156.

20. M.K. Song, K.T. No, Molecular Simulation of Hydrogen Adsorption in Organic Zeolite, Catal. Today, 120 (2007) 374-382.

21. D.H. Jung, D. Kim, T.B. Lee, S.B. Choi, J.H. Yoon, J. Kim, K. Choi, S.H. Choi, Grand Canonical Monte Carlo Simulation Study on the Catenation Effect on Hydrogen Adsorption Onto the Interpenetrating Metal-Organic Frameworks, J. Phys. Chem. B, 110 (2006) 22987-22990.

22. M. Afsari, J. Safdari, J. Towfighi, M.H. Mallah, The Adsorption Characteristics of Uranium Hexafluoride Onto Activated Carbon in Vacuum Conditions, Annals of Nuclear Energy, 46 (2012) 144-151.