اندازه‌گیری دز پرتوهای کیهانی در ارتفاع‌های مختلف جو ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات تابش، دانشگاه شیراز، کدپستی: 7193616548، شیراز- ایران 2. بخش مهندسی هسته‌ای، دانشگاه شیراز، کدپستی: 7193616548، شیراز- ایران

2 مرکز تحقیقات تابش، دانشگاه شیراز، کدپستی: 7193616548، شیراز- ایران

3 نظام ایمنی هسته‌ای کشور، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران 4. پژوهشکده تحقیقات کشاورزی، پزشکی و صنعتی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 498-31485، کرج ـ ایران

4 بخش مهندسی هسته‌ای، دانشگاه شیراز، کدپستی: 7193616548، شیراز- ایران

5 نظام ایمنی هسته‌ای کشور، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

چکیده

میزان پرتوهای کیهانی بسته به عوامل مختلف از جمله ارتفاع از سطح دریا، طول و عرض جغرافیایی محل اندازه­گیری تغییر می­کند. در این پژوهش، میزان پرتوگیری کارکنان پرواز در چند پرواز داخلی ایران در دو مرحله اندازه­گیری شده است. در مرحله­ی اول از دزیمتر گاما برای ثبت آهنگ دز گاما و دزیمتر نوترون برای ثبت آهنگ دز نوترون در 6 پرواز رفت و برگشت در مسیرهای رشت- عسلویه، شیراز- عسلویه و شیراز- مشهد استفاده شد. دز گاما و نوترون در مسیر عسلویه- شیراز با کم­ترین ارتفاع دالان پرواز (19000 پا)، به ترتیب0.15  و 0.04میکروسیورت اندازه­گیری شد در حالی که این مقادیر در مسیر رشت- عسلویه با ارتفاع دالان پرواز 35000 پا به ترتیب برابر با 2.52  و 1.09 میکروسیورت تعیین گردید. در مرحله­ی دوم، تعدادی از کارکنان پرواز به مدت یک سال به دزیمترهای ترمولومینسانس و دزیمترهای پلی­کربنات برای اندازه­گیری دز سالانه­ی به ترتیب، گاما و نوترون مجهز گردیدند. از این طریق، گستره­ی دز سالانه­ی گامای کارکنان پرواز بین 0.5 تا 1.16با میانگین 0.9میلی­سیورت در سال و گستره­ی دز سالانه­ی نوترون این افراد بین 0.37تا 0.77با میانگین 0.61میلی­سیورت در سال اندازه­گیری شد. نتایج این پژوهش با نتایج پژوهش­های پیشین انجام شده در دیگر کشورها قابل مقایسه می­باشد، به عنوان مثال، دز سالانه­ی کارکنان پرواز در کشور انگلستان در حدود 2 میلی­سیورت گزارش شده است و در کشور کانادا بسته به شرایط پرواز (ارتفاع، طول و عرض جغرافیایی مبدأ و مقصد پرواز و ...) پرتوگیری سالانه بین 1 تا 5 میلی­سیورت تخمین زده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Measurements of the Cosmic Rays Dose at Different Altitudes of Iran

نویسندگان [English]

  • R Faghihi 1
  • S Mehdizadeh 2
  • M Jafarizadeh 3
  • S Sina 4
  • M Zehtabian 4
  • M Taheri 5
چکیده [English]

The amount of cosmic rays varies widely with the altitude, latitude and longitude in each region. In this study, the radiation doses due to the cosmic rays were estimated in two steps: in the first step, the neutron and gamma components of the radiation dose were measured for a roundtrip flight on 3 flight routes (Shiraz-Asaluye, Asaluye-Rasht and Shiraz-Mashhad) using a gamma-tracer photon detector and a Thyac 190N, neutron detector. The minimum values of the measured gamma and neutron doses of 0.15 and 0.04μSv were measured on the Asaluyeh-Shiraz route at the lowest altitude of 19000 ft, while for Rasht-Asaluyeh route at an altitude of 35000ft those values were found to be 2.52 and 1.09mSv, respectively. In the second step, a number of aircrew members were equipped with thermoluminescence dosimeters (TLD cards) for evaluating the gamma dose and polycarbonate dosimeters (SSNTD) for assessing the neutron dose for one year. The measured value of the annual effective dose received by the crew ranged between 0.5mSv/y and 1.16mSv/y, with an average of 0.9mSv/y for the gamma component and between 0.37mSv/y and 0.77mSv/y with an average of 0.61mSv/y for the neutron component. The results of this investigation are comparable with the investigations that have been conducted in other countries. For instance in UK, the reported annual effective dose of aircrew is about 2mSv, and in Canada, it is estimated to be between 1 to 5mSv, depending on the flight situations (such as the latitude and longitude of  the cities, the flight altitude, etc).

کلیدواژه‌ها [English]

  • Cosmic Rays
  • Gamma Detector
  • Neutron Detector
  • Thermoluminescence Dosimeters
  • Polycarbonate Dosimeters
  • Aircrew

 

  1. 1.    T.K. Gaisser, “Cosmic rays and particle physics (Cambridge: Cambridge University Press),” (1990).

 

  1. 2.    W. Heinrich, S. Roesler, H. Schraube, “Physics of cosmic radiation fields,” Radiat. Prot. Dosim. 86(4), 253±258 (1999).

 

  1. 3.    “International commission on radiological protection,” Recommendations of the International Commission on Radiological Protection. Publication 60, Ann. ICRP 21 (1–3). Pergamon, Oxford (1991).

 

  1. 4.    “International commission on radiological protection,” General Principles for the Radiation Protection of Workers. ICRP Publication 75 (Oxford: Pergamon Press) (1997).

 

  1. 5.    P. Beck, P. Ambrosi, U. Schrewe, K. O’Brien, “ACREM, aircrew radiation exposure monitoring,” OEFZS Report OEFZS-G-0008 (ARC Seibersdorf research: Seibersdorf, Austria) (1999-a).

 

  1. 6.    P. Beck, D. Bartlett, K. O’Brien, U.J. Schrewe, “In-flight investigation and routine measurements,” Radiat. Prot. Dosim. 86, 303-308 (1999-b).

 

  1. 7.    L. Tommasino, “In-flight measurements of radiation fields and doses,” Radiat. Prot. Dosim. 86, 297-301 (1999).

 

 

 

 

 

 

  1. 8.    U.J. Schrewe, “ACREM air crew radiation exposure monitoring results from the in-flight measurement program of the PTB: summary of the radiation monitoring data,” PTB Laboratorbericht PTB-6. 31-99-1, Braunschweig (1999).
 

  1. 9.    D. Regulla and J. David, “Measurements of cosmic radiation on board Lufthansa aircraft on the major intercontinental flight routes,” Radiat. Prot. Dosim. 48(1), 65-72 (1993).
 

10. B.J. Lewis, M.J. McCall, A.R. Green, L.G.I. Bennett, M. Pierre, U.J. Schrewe, K. O’Brien, E. Felsberger, “Aircrew exposure from cosmic radiation on commercial airline routes,” Radiat. Prot. Dosim. 93, 293-314 (2001).

 

11. J.E. Kyllo¨nen, L. Lindborg, G. Samuelsson, “Cosmic radiation measurements on-board aircraft with the variance method,” Radiat. Prot. Dosim. 93, 197-205 (2001).

 

12. A.M. Romero, J.C. Saez-Vergara, R. Rodriguez, R. Domı´nguez-Mompell, “Study of the ratio of ionising to neutron dose components of cosmic radiation at typical commercial flight altitudes,” Radiat. Prot. Dosim. 110: 357-362 (2004).

 

13. EURADOS, In: Lindborg, L. Bartlett, D. Beck, P. McAulay, I.R. Schnuer, K. Schraube, H. Spurny, F. (Eds.), Cosmic Radiation Exposure of Aircraft Crew—Compilation of Measured and Calculated Data. European Commission, Radiation Protection Issue No. 140. ISBN 92-894-8448-9n (2004).

 

14. B.J. Lewis, P. Tume, L.G.I. Bennett, M. Pierre, A.R. Green, T. Cousins, B.E. Hoffarth, T.A. Jones, J.R. Brisson, “Cosmic radiation exposure on canadian-based commercial airline routes,” Radiat. Prot. Dosim. 86(1), 7-24 (1999).

 

15. W.N. Sont and J.P. Ashmore, “Report on occupational radiation exposures in canada,” Environmental Health Directorate, 99-EHD-239 (1999).

 

16. D.T. Bartlett, Radiation Protection Aspects of the Cosmic Radiation Exposure of Aircraft Crew Radiation Protection Dosimetry, Vol. 109, No. 4, 349-355 (2004).

 

17. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation: Report to the General Assembly with Scientific Annexes, United Nations, New York (1993).

 

18. Safety Standards Series No. RS-G-1.1, Occupational Radiation Protection, International Atomic Energy Agency Vienna, (1999).

 

19. EURADOS, Exposure of Air Crew to Cosmic Radiation: A Report of EURADOS Working Group 11, Radiation Protection No. 85, European Commission, Luxembourg (1996).

 

20. W. Friedberg, K. Copeland, F.E. Duke, K. O’Brien, E.B. Darden Jr, “Guidelines and technical information provided by the US federal aviation administration to promote radiation safety for air carrier crew members,” Radiat. Prot. Dosim. 86, 323-327 (1999).

 

21. K. O’Brien, W. Friedberg, H.H. Sauer, D.F. Smart, “Atmospheric cosmic rays and solar energetic particles at aircraft altitudes,” Environ. Int. 22 (Suppl), S9-S44 (1996).

 

22. D.T. Bartlett, “Radiation protection aspects of the cosmic radiation exposure on aircraft crew,” Radiat. Prot. Dosim. 109(4),  349-355 (2004).