بررسی تأثیر غلظت ورودی ستون بستر ثابت بر روی جذب زیستی اورانیم توسط جلبک قهوه‌ای Cystoseira Indica

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی، صندوق پستی: 1983963113، تهران ـ ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

3 پژوهشکده علوم هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 836-14395، تهران ـ ایران

چکیده

در این مقاله، جذب زیستی اورانیم محلول در آب با استفاده از جاذب زیستی Cystoseira indica که گونه­ای از جلبک قهوه­ای
می­باشد، در یک ستون بستر ثابت و جریان پیوسته مورد تحلیل قرار گرفته است. آزمایش­ها در نرخ جریان ورودی 2.3ml/min (با سرعت ظاهری 1.3cm/min)، در 4=pH و در دمای محیط انجام شد. میزان جذب یون­های اورانیم با استفاده از جاذب زیستی کلسینه شده در غلظت­های مختلف ورودی بررسی شد. نتایج به دست آمده نشان داد که با افزایش غلظت ورودی ستون از 30 تا mg/l120، علی­رغم افزایش ظرفیت جذب جاذب از 266.61  به 371.39mg/g ، درصد حذف فلز کاهش می­یابد. هم­چنین مطابقت نتایج آزمایشگاهی با نتایج پیش­بینی شده به کمک مدل توماس، مدل یون- نلسن و مدل دز- پاسخ بررسی شد. نتایج حاصل نشان داد که هر سه­ی این مدل­ها برای پیش­بینی منحنی­های شکست مناسب می­باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Influent Concentration Effect on the Uranium Biosorption by Cystoseira Indica Brown Alga in a Packed Bed Column

نویسندگان [English]

  • M Ghasemi 1
  • A Keshtkar 2
  • R Dabbagh 3
  • S.J Safdari 2
چکیده [English]

In this paper, biosorption of uranium (VI) from aqueous solution by Cystoseira indica brown alga was studied in a continuous packed bed column. The experiments were performed at room temperature and pH 4. The uptake capacity of uranium ions was investigated by Ca-pretreated biomass in a flow rate of 2.3ml/min, superficial velocity of 1.3cm/min, and different influent concentrations. The results showed that by increasing the influent concentration from 30 to 120mg/l, despite increasing the uptake capacity from 266.61 to 371.39mg/g, leads to reduction of the metal removal percentage. The experimental breakthrough curves were analyzed using Thomas, Yoon & Nelson and dose-response models. The investigations showed that these models are suitable for the breakthrough curves prediction.

کلیدواژه‌ها [English]

  • Biosorption
  • Uranium
  • Packed Bed Column
  • Brown Alga
  • Modeling

 

 

K. Naddafi, R. Nabizadeh, R. Saeedi, A.H. Mahvi, F. Vaezi, K. Yaghmaeian, A. Ghasri, S. Nazmara, “Biosorption of lead(II) and cadmium(II) by protonated Sargassum glaucescens biomass in a continuous packed bed column,” J. Hazard Mater, 147, 785-791 (2007).

 

  • F. Pagnanelli, A. Esposito, F. Veglio, “Multi-metallic modelling for biosorption of binary systems,” Water Res, 36, 4095-4105 (2002).

     

    E. Valdman, L. Erijman, F.L.P. Pessoa, S.G.F. Leite, “Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp.,” Process Biochem, 36, 869–873 (2001).

     

    Z. Aksu, “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris,” Process Biochem, 38, 89-99 (2002).

     

    R. Dabbagh, H. Ghafourian, A. Baghvand, G.R. Nabi, H. Riahi, M.A. Ahmadi Faghih, “Bioaccumulation and biosorption of stable strontium and strontium-90 by Oscillatoria homogenea cyanobacterium,” J. Radioanal Nucl. Ch, 272, 53-597 (2007).

     

    T.A. Davis, B. Volesky, A. Mucci, “A review of the biochemistry of heavy metal biosorption by brown algae,” Water Res, 37, 4311-4330 (2003).

     

    M.W. Figueira, B. Volesky, V.S.T. Ciminelli, F.A. Roddick, “Biosorption of metals in brown seaweed biomass,” Water Res, 34, 196-204 (2000).

     

    B. Benguella and H. Benaissa, “Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies,” Water Res, 36, 2463-2474 (2002).

     

    W. Ma and J.M. Tobin, “Development of multimetal binding model and application to binary metal biosorption onto peat biomass,” Water Res, 37, 3967-3977 (2003).

     

    B. Volesky, “Detoxification of metal-bearing effluents: biosorption for the next century,” Hydrometallurgy, 59, 203–216 (2001).

  • J. Wang and C. Chen, “Biosorbents for heavy metals removal and their future,” Biotechnol Adv, 27, 195-226 (2009).

     

    R. Senthilkumar, K. Vijayaraghavan, M. Thilakavathi, P.V. Iyer, M. Velan, “Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions,” J. Hazard Mater, 136, 791-799 (2006).

     

    R. Dabbagh, M. Ebrahimi, F. Aflaki, H. Ghafourian, M.H. Sahafipour, “Biosorption of stable cesium by chemically modified biomass of Sargassum glaucescens and Cystoseira indica in a continuous flow system,” J. Hazard Mater, 159, 354-357 (2008).

     

    M.H. Khani, A.R. Keshtkar, M. Ghannadi, H. Pahlavanzadeh, “Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae,” J. Hazard Mater, 150, 612-618 (2008).

     

    M.H. Khani, A.R. Keshtkar, B. Meysami, M.F. Zarea, R. Jalali, “Biosorption of uranium from aqueous solutions by nonliving biomass of marine algae Cystoseira indica,” Elec. J. Biotechnol, 9, 100-106 (2006).

     

    M. Calero, F. Hernainz, G. Blazquez, G. Tenorio, M.A. Martin-Lara, “Study of Cr(III) biosorption in a fixed-bed column,” J. Hazard Mater, 171, 886-893 (2009).

     

    K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, “Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column,” J. Hazard Mater, 113, 223-230 (2004).

     

    Z. Aksu, S.S. Cagatay, F. Gonen, “Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: Determination of column capacity,” J. Hazard Mater, 143, 362–371 (2007).

     

    B. Volesky, “Sorption and Biosorption,” BV Sorbex, St. Lambert, Que., Inc., Canada, (2003).

     

    Z. Aksu and F. Gonen, “Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves,” Process Biochem, 39, 599-613 (2004).

     

    Y.H. Yoon and J.H. Nelson, “Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life,” Am Ind Hyg Assoc J, 45, 509-516 (1984).

     

    V.J. Vilar, C.M. Botelho, J.M. Loureiro, R.A. Boaventura, “Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column,” Bioresour Technol, 99, 5830-5838 (2008).

     

    S.S. Ahluwalia and D. Goyal, “Microbial and plant derived biomass for removal of heavy metals from wastewater,” Bioresour Technol, 98, 2257-2243 (2007).

     

    R. Han, Y. Wang, W. Zou, Y. Wang, J. Shi, “Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column,” J. Hazard Mater, 145, 331–33 (2007).

     

    G. Yan and T. Viraraghavan, “Heavy metal removal in a biosorption column by immobilized M. rouxii biomass,” Bioresour Technol, 78, 243-249 (2001).