تولید، کنترل کیفی و توزیع زیستی قطعه‌ی F(ab′)2 آنتی‌بادی PR81 نشان‌دار شده با mTc99، به منظور تشخیص تومور کارسینومای سینه‌ی موش

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه بیولوژی، دانشکده علوم، دانشگاه آزاد اسلامی، واحد زنجان، کدپستی: 58145-45156، زنجان - ایران

2 گروه رادیوایزوتوپ، پژوهشکده علوم هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 836-14395، تهران- ایران

3 گروه فیزیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، صندوق پستی: 331-14115، تهران ـ ایران

4 گروه بیوشیمی بالینی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، صندوق پستی: 331-14115، تهران ـ ایران

5 - بخش پزشکی هسته‌ای، مرکز پزشکی و پژوهشی بیماری‌های قلبی- عروقی بیمارستان شهید رجایی، کدپستی: 11151-19969، تهران ـ ایران

چکیده

قطعات آنتی‌بادی نسبت به آنتی‌بادی‌های کامل، دارای مزایایی برای جذب و نفوذ در تومورها هستند. هدف از این مطالعه تهیه‌ی قطعات 2F(ab') از آنتی‌بادی PR81 و نشان‌دارسازی آن‌ها با mTc99، به منظور تولید یک رادیوداروی زیستی برای تصویربرداری از سرطان سینه در پزشکی هسته‌ای است. بدین منظور آنتی‌بادی PR81 با استفاده از آنزیم پپسین به نسبت 1 به 20 (آنزیم به آنتی‌بادی) در زمان‌های مختلف هضم گردید تا بهترین زمان هضم کامل آنتی‌بادی به دست آید. قطعات 2F(ab') تولید شده، به وسیله‌ی ستون کروماتوگرافی پروتیین A تخلیص شدند. ایمونوراکتیویته‌ی قطعات آنتی‌بادی با استفاده  از روش رادیوایمونواسی برابر 65.2% ± 5.1 تعیین گردید. نشان‌دارسازی قطعات 2F(ab') با mTc99 با استفاده از HYNIC به عنوان کی‌لیت‌ساز و ترایسین به عنوان کولیگاند، در مدت یک ساعت پس از شروع واکنش، با خلوص رادیوشیمیایی 70.1%±5.2  و با پایداری بالا انجام شد. محصول تولیدی جهت افزایش خلوص رادیوشیمیایی با استفاده از روش کروماتوگرافی ژلی تخلیص گردید. مطالعات توزیع زیستی و تصویربرداری در موش‌های BALB/c دارای تومور پستان پیوندی، تجمع مولکول تولید شده را 4 ساعت پس از تزریق با حساسیت بالایی در تومور سینه بدون تجمع محسوسی در سایر اندام‌ها نشان داد. این نتایج بیان‌گر آن است که قطعه‌ی 2F(ab') آنتی‌بادی PR81 یک کاندیدای امیدوارکننده برای مطالعات تصویربرداری از کارسینومای سینه‌ی انسان به روش رادیوایمونوسینتی‌گرافی است.

کلیدواژه‌ها


عنوان مقاله [English]

Production, Quality Control and Biodistribution Study of F(ab')2 Fragment of Antibody PR81 Labeled with 99mTc for Diagnosis of Breast Carcinoma Bearing Mice

نویسندگان [English]

  • M Salouti 1
  • M.H Babaei 2
  • H Rajabi 3
  • H Forootan 2
  • M.J Rasaee 4
  • A Bitarafan Rajabi 5
  • F Johari Daha 2
  • M Mazidi 2
  • J Mohammad Nejad 4
  • M Shafiee 2
چکیده [English]

Immunoglobulin fragments offer a number of advantages for intratumor penetration over the intact antibodies. The goal of this study was to prepare F(ab')2 fragmants from antibody PR81 and 99mTc labeling in order to produce a biological radiopharmaceutical for imaging of breast cancer in nuclear medicine. The antibody PR81 was digested with 5% (w/w) pepsin at different times to find the best time for a complete digestion. The prepared F(ab')2 fragments were purified by protein A column chromatography. The immunoreactivity of the complex assessed by radioimmunoassay was determined to be 65.2% ± 5.1. 99mTc radiolabeling of F(ab')2 fragment by using HYNIC as a chelator and tricine as a
co-ligand resulted in a radiochemical purity of 70.1%±5.2 after 1 hr with a high stability. The complex was purified by the gel chromatography method to increase the radiochemical purity. Biodistribution and imaging studies in BALB/c mice with breast tumor xenograft demonstrated as a specific localization of the compound at the site of tumors 4 h post injection with high sensitivity and minimum accumulation in non target organs. The results showed that F(ab')2 fragment of PR81 is a promising candidate for radioimmunoscintigraphy of the human breast carcinoma.

کلیدواژه‌ها [English]

  • Breast Carcinoma
  • Radioimmunoscintigraphy
  • Antibody PR81
  • F(ab′)2
  • Fragment
  • 99mTc Labeling
  1. 1.    جهت دریافت کارشناسی ارشد مامایی، دانشگاه تربیت مدرس (سال 1382).                                                                              

 

  1. 2.    M. Paknejad, M.J. Rasaee, F. Karami, S. Kashanian, M.A. Mohagheghi, K. Omidfar, “Production of monoclonal antibody, PR81, recognizing the tandem repeat region of MUC1 mucin,” Hybridoma and Hybridomics, 22(3): 153-158 (2003).

 

  1. 3.    M. Salouti, H. Rajabi, H. Babaei, M.J. Rasaee, R. Najafi, M. Paknejad, Z. Mohammad Hasan, T.M. Altarihi, “99mTc direct radiolabeling of PR81, a new anti-MUC1 monoclonal antibody for radioimmunoscintigraphy,” Iran J. N. M, 23: 7-16 (2005).

 

  1. 4.    M. Salouti, H. Rajabi, M.H. Babaei, M.J. Rasaee, R. Najafi, M. Paknejad, Z. Mohammad Hasan, T.M. Altarihi, J. Mohammad Nejad, “A New Monoclonal Antibody Radiopharmaceutical for Radioimmunoscintigraphy of Breast Cancer: Direct Labeling of Antibody and Its Quality Control,” DARU; 14(1): 14-19 (2006).

 

  1. 5.    M. Salouti, H. Rajabi, M.H. Babaei, M.J. Rasaee, R. Najafi, M. Shafiee, M. Mazidi, Z.M. Hasan, A. Bitarafan Rajabi, N. Namvar, T.M. Altarihi, Mohammad Nejad, “Radioimmunoscintigraphy of Breast Tumor Xenografts in mouse model by 99mTc Direct Radiolabeling of a Monoclonal Antibody PR81,” The Iranian Journal of Medical Physics, 2(8): 27-34, 60 (2005).

 

  1. 6.    M. Salouti, H. Rajabi, M.H. Babaei, M.J. Rasaee, R. Najafi, M. Shafiee, M. Mazidi, Z.M. Hasan, A. Bitarafan Rajabi, N. Namvar, T.M. Altarihi, Mohammad Nejad,

 

  1. 7.    S. Potamianos, A.D. Varvarigou, S.C. Archimandritis, “Radioimmunoscintigraphy and radioimmunotherapy in cancer: principles and application,” Anticancer Research, 20: 925– 948 (2000).

 

 

  1. 8.    M. Mariani, M. Camagna, L. Tarditi, E. Seccamani, “A new enzymatic method to obtain high–yield F(ab')2 suitable for clinical use from mouse IgG1,” Molecular Immunology, 28(1/2): 69-77 (1991).

 

  1. 9.    D.W. Rea, M.E. Ultee, “A novel method for controlling the pepsin digestion of antibodies,” JIM, 157: 165-173 (1993).

 

10. S. Demignot, M.C. Garnett, R.W. Baldwin, “Mouse IgG2b monoclonal antibody fragmentation. Preparation and purification of Fab, Fc and Fab/c fragments,” JIM, 121: 209-217 (1989).

 

11. D.E. Milenic, J.M. Esteban, D. Colcher, “Comparison of methods for the generation of immunoreactive fragments of a monoclonal antibody (B72.3) reactive with human carcinomas,” JIM, 120: 71-83 (1989).

 

12. R. Kurkela, L. Vuolas, P. Vihko, “Preparation of F(ab')2 fragments from monoclonal mouse IgG1 suitable for use in radioimmunoimaging,” JIM,  110: 229-236 (1988).

 

13. T. Ghazanfari, Z. Mohammad, R. Yaraie, “Recognition and determination of immunogenicity of a spontaneous tumor in a BALB/c mouse,” Daneshvar, 24: 65-72 (1998).

 

14. B.A. Rhodes, D.A. Torvestad, K. Breslow, “99mTc labeling and acceptance testing of radiolabeled antibodies and antibody fragments. In: Burcheil SW, Rhodes BA, editors. Tumor Imaging. New York: Mason, 111 (1982).

 

15. M.H. Babaei, R. Farshidfar, R. Najafi, “Evaluation of tumor targeting with radiolabeled F(AB')2 fragment of a humanized monoclonal antibody,” DARU, 10(2): 49-53 (2002).

 

16. T.M. Behr, S. Memtsoudis, R.M. Sharkey, R.D. Blumenthal, R.M. Dunn, S. Gratz, “Experimental studies on the role of antibody fragments in cancer radio-immunotherapy: influence of radiation dose and dose rate on toxicity and anti-tumor efficacy,” Int. J. Cancer, 77: 787-795 (1998).

17. R. Kurkela, L. Vuolas, P. Vihko, “Preparation of F(ab')2 fragments from monoclonal mouse IgG1 suitable for use in radioimaging,” JIM, 110: 229-236 (1988).

 

18. H.J. Haisma, J. Hilgers, V.R. Zurawski, “Iodination of monoclonal antibodies for diagnosis and radiotherapy using a convenient one vial method,” J. Nucl. Med. 27: 1890-1895 (1986).

 

19. T. Lindmo, E. Boven, F. Cuttitta, J. Fedorko, P.J. Bunn, “Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation of binding at infinite antigen excess,” J. Immunol Methods, 65: 55-63 (1983).

 

20. M.J. Abrams, M. Juweid, C.I. TenKate, “Technetium-99m human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats,” J. Nucl. Med. 31: 2022-2028 (1990).

 

21. A. Johnstone, R. Thorpe, “Basic techniques. In: Johnstone A, Thorpe R, editors. Immunochemistry in practice. Blackwell Science Ltd, 1-34 (1996).

 

22. H.J. Lee, W. Pardridge, “Monoclonal antibody radiopharmaceuticals: cationization, pegylation, radiometal chelation, pharmacokinetics, and tumor imaging,” Bioconjugate Chem, 14: 546-553 (2003).

 

23. M.J. Verhaar, B.A. Zonnenberg, J.M.H. Klerk, G.H. Blijham, “Radioimmunodiagnosis and therapy,” Cancer Treatment Reviews, 26: 3-10 (2000).

 

24. Y. Yamaguchi, H. Kim, K. Kato, K. Masuda, I. Shimada, Y. Arata, “Proteolytic fragmentation with high specificity of mouse immunoglobulin,” G. JIM, 181: 259-267 (1995).

 

25. L.M. Lamki, “Radioimmuniscintigraphy of cancer, problems, pitfalls and prospects. In: Freeman, L.M. (ed) Nuclear Medicine Annual 1990, Raven Press, New York, 113-150 (1990).

 

26. A.M. Verbruggen, “Radiopharmaceuticals: state of the art,” Eur. J. Nucl. Med. 17: 346-364 (1990).

 

27. S.W. Schwarz, J.M. Connett, C.J. Anderson, et al, “Evaluation of a direct method for technetium labeling intact and F(ab')2 1A3, an anticolorectal monoclonal antibody,” Nucl. Med. Biol. 21: 619-626 (1994).

 

28. S.K. Larsen, G. Caldwell, J.D. Higgins, M.S. Abram, H.F. Solomon, “Technetium complex of tricine: useful precursor for the 99mTc labelling of hydrazino nicotinamide modified proteins,” J. Label Compd Radiopharm, 35: 1-2 (1994).

 

29. B.W. Wessels, “Current status of animal radioimmunotherapy,” Cancer Res, 50, 970-973 (1990).