تولید و ارزیابی رادیونوکلید Re186 با استفاده از رآکتور تحقیقاتی تهران برای مقاصد درمانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده علوم هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 3486-11365، تهران ـ ایران

2 پژوهشکده تحقیقات و توسعه راکتورها و شتاب‌دهنده‌ها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

چکیده

در این طرح تحقیقاتی، تولید رادیونوکلید Re186 از طریق واکنش Re186(n,γ)Re185 در رآکتور تحقیقاتی تهران (T.R.R) مورد مطالعه قرار گرفت. فعالیت Re186 تولید شده، پس از یک زمان خنک‌سازی 4 روز با استفاده از یک شمارگر سوسوزن مایع و یک دز کالیبراتور اندازه‌گیری شد. هم‌چنین فعالیت نمونه‌ها با استفاده از شار نوترونی به دست آمده از شبیه‌سازی مونت‌کارلو قلب رآکتور محاسبه شدند. مقادیر محاسبه شده و اندازه‌گیری شده‌ی فعالیت با اختلاف 18 درصد با یک‌دیگر قابل قیاس بودند و ضرایب تجربی تصحیح فعال‌سازی برای نمونه‌های رنیم طبیعی (شار نوترون گرمایی 6.5×1013 cm-2 s-1) و رنیم غنی‌شده از Re185 (شار نوترون گرمایی 1.18×1013 cm-2 s-1) برای رآکتور تحقیقاتی تهران، به ترتیب برابر، با 0.820و 1.135  به دست آمد. نتایج نشان داد که Re186 به شکل پررنات با خلوص رادیوشیمیایی و رادیونوکلیدی، به ترتیب، برابر با 96.5%  و 99 درصد قابل دست‌یابی است. رنیم با فعالیت ویژه‌ی بالا (در حدود mCi/mg300) برای مصارف درمانی از هدف رنیم با غنای بالای Re185 در رآکتور تحقیقاتی تهران قابل دست‌یابی می‌باشد و برای نمونه‌های با فعالیت ویژه‌ی متوسط از رنیم طبیعی می‌توان استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Production and Evaluation of 186Re Radionuclide in the Tehran Research Reactor for Therapeutic Applications

نویسندگان [English]

  • Sh Sheibani 1
  • H Pourbeigi 1
  • Y.H Tavakoli 1
  • M Keyvani 2
چکیده [English]

In this work, the production of 186Re by 185Re (n,γ) 186Re reaction in the Tehran Research Reactor (T.R.R) is investigated. The activity of 186Re was measured after a cooling time of 4 days, using a liquid beta scintillation system and a dose calibrator. Also, activity of the samples were calculated using fluxes determined by Monte Carlo simulation of the reactor core. The calculated and measured values for the activity of irradiated samples are comparable in the range of ±18% and the irradiation correction factors are 1.135 and 0.820 for natural rhenium (thermal neutron flux of 6.5×1013 cm-2 s-1)and rhenium samples with high the isotope abundance of 185Re (thermal neutron flux of 1.18×1013 cm-2 s-1), respectively. The results have shown that 186Re samples (in the form of perrhenate) can be achieved with 96.5% radiochemical purity and 99% radionuclidic purity. The products with the high specific activity of about 300mCi/mg for therapeutical aplications can be achieved in T.R.R. using rhenium sample target with a high abundance from rhenium-185 target; and for the medium with the mean specific activity, natural rhenium can be used.

  1. 1.    J. Koutsikos and A. Leondi, “Treatment efficacy of combined biphosphonates and 186Re-HEDP treatment in cancer patients with bone metastases,” Eur. J. Nucl. Mol. Imaging 35(4), 756-765 (2008).

 

  1. 2.    R. Klett, U. Lange, H. Haas,M. Voth,J. Pinkert, “Radiosynoviorthesis of medium-sized joints with rhenium-186-sulphide colloid: a review of the literature,” Rheumatology, 46(10), 1531-1537 (2007).

 

  1. 3.    H. Breitz, P.I. Weiden, J.L. Vanderheyden, J.W. Appelbaum, “Clinical experience with rhenium-186-lebeled monoclonal antibodies for radioimunotherapy: results of phase I trials,” J. Nucl. Med. 33, 1099-1112 (1992).

 

  1. 4.    B.M. Coursey, J. Cessna, E. Garcia-Tornado, “The standardization and decay scheme of rhenium-186,” Appl. Radiat. Isot. 42, 865-869 (1991).

 

  1. 5.    G.J. Ehrhardt, M.E. Blumer, F.M. Su, “Experience with aluminum perrhenate targets for reactor production of high specific activity 186Re,” Appl. Radiat. Isot, 48, 1-4 (1997).

 

  1. 6.    M. Neves, A. Kling, R.M. Lambrecht, “Radionuclide production for therapeutic radiopharmaceuticals,” Appl. Radiat. Isot. 57,  657-604 (2002).

 

  1. 7.    International Atomic Energy Agency, “Manual for reactor produced radioisotopes,” IAEA-TECDOC 1340 (2003).

 

  1. 8.    J.F. Briesmeister, “MCNP-A general Monte Carlo N-particle transport Code, Version 4C, Los Alamos National Laboratory Report LA12625.

 

  1. 9.    Atomic Energy Organization of Iran, “Safety Analysis Report of Tehran Research Reactor,” Rev. 2 (October 2002).

 

  1. 10.              Atomic Energy Organization of Iran, “Distribution of thermal neutron flux a long fuel elements and empty boxes in reactor core,” Neutron Physics Group Reports (1385).

 

11. International Atomic Energy Agency, “Therapeutic applications of radiopharmaceutical,” IAEA-TECDOC-1228, 199-295 & 207-214 (2001).

 

  1. 12.              MDS, “Rhenium-186 Radiochemical Sodium Perrhenate Solution,” MDS Inc, MDS Nordion division, www.mdsnordion.com (2008).