بررسی درصد دز عمقی باریکه‌های فوتونی و وابستگی آن به آهنگ دز در دزیمتر ژلی- پلی‌مری نورمکسیک PAGAT با استفاده از تکنیک ام.آر.آی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی، دانشگاه آزاد اسلامی واحد بروجرد، صندوق پستی: 518، بروجرد- ایران

2 دانشکده مهندسی هسته‌ای، دانشگاه شیراز، صندوق پستی: 84471-71946، شیراز- ایران

3 انستیتو پرتو پزشکی نوین تهران، صندوق پستی: 599-14665، تهران- ایران

چکیده

برای تعیین درصد دز عمقی باریکه‌های فوتونی با انرژی‌های مختلف در دزیمتر ژلی- پلی‌مری PAGAT و وابستگی آن به آهنگ دز با استفاده از تکنیک ام.آر.آی از مواد و ترکیبات شیمیایی با درصدهای وزنی زیر استفاده شده است: 4.5% بیس N-N' متیلن- بیس-آکریل‌آمید
4.5% آکریل‌آمید، 5 درصد ژلاتین، 5 میلی‌مول تتراکیس، 0.01 میلی‌مول هیدروکینون و 86 درصد آب دو بار تقطیر شده. برای تابش‌دهی ویال‌ها از فوتون‌های Co60 دستگاه درمانی سری c780-Theratron انستیتو پرتو پزشکی نوین تهران و شتاب‌دهنده‌ی خطی الکتا بیمارستان نیروی هوایی تهران استفاده شده است. تصویربرداری با استفاده از یک سیستم ام.آر.آی ساخت شرکت زیمنس به قدرت 1.5 T انجام شده است. تمام ژل‌های پلی‌مری یک روز پس از ساخت، پرتودهی شده و یک روز بعد از پرتودهی با استفاده از سیستم ام.آر.آی تصویربرداری شده‌اند. در تعیین درصد دز عمقی در ژل پلی‌مری نورمکسیک PAGAT، برای انرژی‌های بالاتر، فوتون‌ها تمایل به نفوذ بدون پراکندگی در ماده داشته و پراکندگی فوتون‌ها نیز رو به جلو می‌باشد. میزان دز عمقی باریکه‌های فوتونی Co60 در عمق 0.5 cm برابر 100 درصد بوده و برای عمق cm21 این مقدار به 48 درصد کاهش یافته است و برای فوتون‌های 4، 6 و MV18 شتاب‌دهنده میزان دز عمقی بیشینه برای عمق cm21، به ترتیب، به مقادیر 52، 57.3 و 59.73%, کاهش یافته است و این نشان می‌دهد که برای انرژی‌های بالاتر میزان تجمع دز در فواصل عمقی بیش‌تر خواهد بود. بررسی حساسیت ژل PAGAT به آهنگ دز نشان داد که با تغییر آهنگ دز از 80 به cGy/min480 تغییری در مقادیر آهنگ واهلش عرضی، 2R، مشاهده نشده است. به عبارت دیگر این نشان می‌دهد که ژل پلی‌مری PAGAT به آهنگ دز وابسته نبوده و در نتیجه می‌توان برای بالا بردن سرعت پرتودهی و کاهش زمان پرتودهی از آهنگ‌های دز بالاتر استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Percentage Depth Dose (PDD) and Dose Rate Dependence of PAGAT Polymer Gel Dosimeter for Photon Beams Using MRI Technique

نویسندگان [English]

  • B Azadbakht 1
  • K Hadad 2
  • M.H Zahmatkesh 3
چکیده [English]

In this work, the investigation of the normoxic PAGAT polymer-gel dosimeter percentage depth dose (PDD) and it’s dose rate dependence has been made. Using MRI, the formulation to give the maximum change in the transverse relaxation rate R2 was determined to be 4.5% N,N'-methylen-bis-acrylamide©(bis), 4.5% acrylamid (AA), 5% gelatine, 5mM tetrakis (hydroxymethyl) phosphonium chloride (THPC), 0.01 mM hydroquinone (HQ) and 86% HPLC(Water). Irradiation of vials was performed using photon beams of Co-60 therapy unit and an Electa linear accelerator. Gel dosimeters were imaged in a Siemens Symphony 1.5 Tesla clinical MRI scanner using a head coil. Post-manufacture irradiation and post imaging times were both selected to be 1 day. For determing the percentage depth dose of the PAGAT gel it was found that at the depth of 21cm, the percentage depth dose for 1.25 MeV γ-ray photons of 60Co and for 4,6 and 18 MV x-ray photons of Electa linear accelerator, are 48%, 52%, 57.3% and 59.73%, respectively. Thus, in the case of the higher energy photon beams, a higher dose can be delivered to deep-seated tumors. The dose rate dependence of PDD was studied for 6 MV x-ray photons with the use of dose rates of 80, 160, 240, 320, 400 and 480cGy/min. No trend in polymer-gel dosimeter 1/T2 dependence was found on the mean dose rate and energy for the photon beams.

  1. 1.    M. Oldham, S. Kumar, J. Wong, D.A. Jaeffray, “Optical-CT gel-dosimetry I:Basic investigation,” Med. phys. 30(4), 623-634 (April 2003).

 

  1. 2.    E.B. Podgorsak, [Editor of] “Radiation oncology physics: a handbook for teachers and students,” ISBN. 92-0-107304-6, International Atomic Energy Agency (IAEA), Austria (2005).

 

  1. 3.    K. Vergote, “Development of polymer gel dosimetry for applications in intensity-modulated radiotherapy,” PhD. Thesis. Department of Radiotherapy and Nuclear Medicine, Faculty of Medicine and Health Sciences, University of Gent, Belgum (2005).

 

  1. 4.    A.J. Venning, S. Brindha, B. Hill, C. Baldock, “Preliminary study of a normoxic PAG gel dosimeter with tetrakis (hydroxymethyl) phosphonium chloride as an antioxidant,” Third International Conference on Radiotherapy Gel Dosimetry. Journal of Physics: Conference Series, 155-158, 3(2004).

 

  1. 5.    M.H. Zahmatkesh, R. Kousari, Sh. Akhlaghpour, S.A. Bagheri, “MRI gel dosimetry with methacrylic acid. Ascorbic acid. Hydroquinone and Copper in Aharose (MAGICA) gel,” Preliminary Proceedinges of DOSGEL. Sep. 13-16, Ghent. Belgium (2004).

 

 

  1. 6.    Y. De Deen, N. Reynaert, C. De Wagter, “On the accuracy of monomer/polymer gel dosimetry in the proximity of high-dose-rate Ir192source,” Phys. Med Biol. 46, 2801-2825 (2001).

 

  1. 7.    A.J. Venning, B. Hill, S. Brindha, B.J. Healy, C. Baldock, “Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging,” Phys. Med. Biol. 50, 3875-3888 (2005).

 

  1. 8.    B. Hill, A. Venning, C. Baldock, “The dose response of normoxic polymer gel dosimeters measured using X-ray CT,” The British Journal of Radiology, 78, 623-630 (2005).

 

  1. 9.    J. Novontny, V. Spevacek, P. Dvorak, T. Cechak, “Energy and dose rate dependence of  BANG-2 polymer-gel dosimeter,” Med. Phys. 28, 0094-2405 (2001).

 

  1. 10.              E. Pappas, A. Angelopoulos, P. Kipouros, L. Vlachos, S. Xenofos, I. Seimenis, “Evaluation of the performance of VIPAR polymer gels,” Med. Phys. Biol. 48, N65-N73 (2003).

 

  1. 11.              M.J. Maryanski, G.S. Ibbott, P. Estman, R.J. Schulz, J.C. Gore, “Radiation therapy dosimetry using magnetic resonance imaging of polymer gels,” Med. Phys. 23, 699-705 (1996).