سینتیک اکسایش میکروبی در فرایند فروشویی زیستی اورانیم در یک زیست رآکتور هوا- بالارونده با حلقه جریان داخلی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده ی مهندسی شیمی، دانشگاه سمنان، صندوق پستی: 3513119111، سمنان ـ ایران

2 پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی، صندوق پستی: 8486-11365، تهران ـ ایران

3 گروه مهندسی شیمی، دانشکده ی مهندسی، دانشگاه مازندران، کدپستی: 47415، بابلسر ـ ایران

چکیده

با استفاده از یک زیست رآکتور هوا- بالارونده با حلقه جریان داخلی و با به کارگیری باکتری اسیدی تیوباسیلوس فرواکسیدان و سنگ معدن اورانیم آنومالی 2 ساغند، اکسایش میکروبی آهن فرو، هنگام استخراج اورانیم بررسی شد. برای پیش‌بینی سینتیک اکسایش میکروبی، مدل‌های مونود و مدل‌های اصلاح شده برای بازدارندگی محصول و ماده‌ی اصلی در نرخ‌های هوادهی مختلف مورد استفاده قرار گرفت. طبق نتایج به دست آمده بیش‌ترین مقدار استخراج اورانیم با باکتری برابر با %1/97 و بدون باکتری برابر با %21 بود. برازش داده‌های تجربی با مدل‌های پیش‌گفته نشان داد که در تمام نرخ‌های هوادهی در رآکتور، مدل اصلاح شده برای بازدارندگی ماده‌ی اصلی تطابق بیش‌تری با داده‌های تجربی داشت و مقدار 2R در نرخ‌های هوادهی 0065/0، 0085/0، 01/0 و 015/0 متر بر ثانیه، به ترتیب، برابر با 98/0، 97/0، 94/0 و 94/0 محاسبه شد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Kinetics of Microbial Oxidation in Uranium Bioleaching at an Internal Loop Air-Lift Bioreactor

نویسندگان [English]

  • Mohammadreza Zolala 1
  • SeyedJaber Safdari 2
  • Ali Haghighi-Asl 1
  • Abbas Rashidi 3
چکیده [English]

To study microbial oxidation of ferrous ions through the uranium bioleaching process, experiments were carried out in the internal loop air-lift reactor by Acidithiobacillus ferrooxidans. The microbial oxidation kinetics was evaluated with the Monod correlation and modified models for the substrate and product inhibition. The maximum recovery of uranium in the biological and control tests were 97.1% and 21%, respectively. Evaluation of the experimental data with the mentioned models showed that the modified model for the substrate inhibition gave a good fitting for all aeration rates. The R2-values were found to be 0.98, 0.97, 0.94 and 0.94 for the air superficial velocity of 0.0065, 0.0085, 0.01 and 0.015 m/s, respectively.

کلیدواژه‌ها [English]

  • Bioleaching
  • Uranium
  • Air-Lift Reactor
  • Microbial Oxidation
  • Kinetics

1. A. Rubio, F.J. Garcia Frutos, Bioleaching capacity of an extremely thermophile culture for chalcopyritic materials, Minerals Engineering, 15 (2002) 689-694.

2. A.D. Agate, Recent advances in microbial mining, World Journal of Microbiology and Biotechnology, 12 (1996) 487-495.

3. K. Bosecker, Bioleaching: metal solubilization by microorganisms, FEMS Microbiology Reviews, 20 (1997) 591-604.

4. D.E. Rawlings, S. Silver, Mining with microbes, Nat Biotechnol. 13 (1995) 773-778.

5. W. Krebs, C. Brombacher, P. Bosshard, Microbial recovery of metals from solids, FEMS Microbiology Reviews, 20 (1997) 605-617.

6. J.A. Munoz, F. Gonzalez, M.L. Blazquez, Study of the bioleaching of a Spanish uranium ore, Part I: a review of the bacterial leaching in the treatment of uranium ores, Hydrometallurgy, 38 (1995) 39-57.

7. J. Hadaddin, C. Dagot, M. Fick, Models of bacterial leaching, Enzyme Microbial Technology, 17 (1995) 290-305.

8. S.R. Shrihari, R. Kumar, K. Gandhi, Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans, Applied Microbiology and Biotechnology, 33 (1990) 524-528.

9. F. Crundwell, The kinetics of the chemiosmotic proton circuit of the iron-oxiding bacterium Thiobacillus ferrooxidans, Bioelectrochemistry and Bioenergetics, 43 (1997) 115-122.

10. M. Nemati, S. Harrison, C. Hansford, Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review of kinetic aspects, Biochem. Eng. J. 11 (1998) 71-90.

11. D.T. Lacey, F. Lawson, Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans, Biotechnol. Bioeng, 12 (1970) 29-50.

12. D.G. MacDonald, R.H. Clark, The oxidation of aqueous ferrous sulphate by Thiobacillus ferrooxidans, Can. J. Chem. Eng. 48 (1970) 669-676.

13. M.S. Liu, R.M.R. Branion, D.W. Duncan, The effects of ferrous iron, dissolved oxygen, and inert solids concentrations on the growth of Thiobacillus ferrooxidans, Can. J. Chem. Eng. 66 (1988) 445-451.

14. J.M. Gomez, I. Caro, Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulphate solutions, J. Biotechnol, 48 (1996) 147-52.

15. S.M. Mousavi, S. Yaghmaei, A. Jafari, Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans, Part I: Flask experiments, Fuel, 85 (2006) 2555-2560.

16. G. Cabrera, J.M. Gomez, D. Cantero, Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions, Enzyme and Microbial Technology, 36 (2004) 301-306.

17. P. Kalin, K. Dimitre, Batch kinetics of ferrous iron oxidation by Leptospirillum ferriphilum at moderate to high total iron concentration, Biochemical Engineering Journal, 50 (2010) 54-62.

18. S. Pablo, A. Victor, Kinetics of ferrous iron oxidation by Sulfobacillus thermo- sulfidooxidans, Biochemical Engineering Journal, 51 (2010) 194-197.

19. J.F. Braddock, H.V. Luong, E.J. Brown, Growth kinetics of Thiobacillus ferrooxidans isolated from arsenic mine drainage, Appl. Environ. Microbiol, 48 (1984) 48-55.

20. J. Manuel Gomez, D. Cantero, Modelling of Ferrous Sulphate Oxidation by Thiobacillus ferrooxidans in Discontinuous Culture: Influence of Temperature, pH and Agitation Rate, Journal of fermentation and bio engineering, 86 (1998) 79-83.

21. Y. Chisti, U.J. Jauregui-Haza, Oxygen transfer and mixing in mechanically agitated airlift bioreactors, Biochem. Eng. J. 10 (2002) 143-153.

22. P. Zhou, J. He, Y. Qian, Biofilm airlift suspension reactor treatment of domestic wastewater, Water Air Soil Pollute, 144 (2003) 81-100.

23. C. Vial, S. Poncin, G. Wild, Experimental and theoretical analysis of the hydrodynamics in the riser of an external loop airlift reactor, Chem. Eng. Sci. 57 (2002) 4745-4762.

24. J.C. Merchuk, M. Gluz, Bioreactors, Airlift Reactors, In the Encyclopedia of Bioprocess Technology (Flickinger. M.C. and S.W. Drew, editors). 1, John Wiley & Sons Inc., USA (1999) 320-353.
25. Y. Chisti, Airlift Bioreactors, Elsevier Applied Science, London (1989).

26. Y. Chisti, M. Moo-Young, Airlift Reactors: Characteristics, Applications and Design, Chem. Eng. Commun, 60 (1989) 195-242.

27. M. Moo-Young, Y. Chisti, Bioreactor Design for Aeration of Shear Sensitive Fermentation Cultures, Proceeding of 8 Int. Biotechnol Symp, (1988) 454-466.

28. Y. Chisti, M. Moo-Young, Improve the Performance of Airlift Reactors, Chem. Eng. Progress, 89 (1993) 38-45.

29. F. Benyahia, L. Jones, Scale Effects on Hydrodynamics and Mass Transfer Characteristics of External Loop Airlift Reactors, J. Chem. Technol. Biotechnol, 69 (1997) 301-308.

30. M. Tobajas, M.H. Siegel, Influence of Geometry and Solid Concentration on the Hydrodynamics and Mass Transfer of a Rectangular Airlift Reactor for Marine Sediment and Soil Bioremediation, Can. J. Chem. Eng. 77 (1999) 660-669.

31. S.M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an Air-lift bioreactor, Hydrometallurgy, 80 (2005) 139-144.

32. S. Shaoyuan, Z. Fang, Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an Air-lift reactor, Int. J. Miner. Process, 76 (2004) 3-12.

33. D. Fang, L. Zhou, Enhanced Cr bioleaching efficiency from tannery sludge with co inoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an Air-lift reactor, Chemosphere, 69 (2007) 303-310.

34. S. Chen, J. Lin, Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration, Water Research, 38 (2004) 3205-3214.

35. R.M. Atlas, Handbook of media for environmental microbiology, second edition, Taylor and Francis (2005).

36. ASTM, D4454 Standard test method for simulataneous enumeration of total and respiring in aquatic systems by microscopy annual book of ASTM standards, American Society for Testing and Materials, 11.02 (2009).