تشکیل ایزومرهای تیروزین در محلول‌های آبی فنیل‌آلانین پرتودهی شده با تابش گاما

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده علوم هسته‌‌ای، پژوهشگاه علوم و فنون هسته‌‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

روش آشکارسازی ارتو تیروزین را می­توان برای آشکارسازی پرتودیدگی مواد غذایی سرشار از پروتئین بکار برد. به منظور اطلاع از اساس این روش، ایزومرهای تیروزین تشکیل شده در محلول‌های آبی‌فنیل‌آلانین پرتودهی شده با پرتو گاما در گستره وسیعی از دز تابش
(0.1-50kGy) مورد بررسی قرار گرفته است. اندازه­گیری ایزومرهای تیروزین در محلول‌های آبی فنیل‌آلانین با استفاده از کروماتوگرافی مایع با کارایی بالا و آشکارسازی فلورسانس انجام گرفت. حد آشکارسازی ارتوتیروزین 0.01ppm  و گستره خطی بودن پاسخ دستگاه برابر 0.01 تا ppm50 و انحراف استاندارد نسبی اندازه‌گیری­ها بین 13-4% بود. در محلول‌های آبی فنیل‌آلانین (mg/ml 1)، تا دز kGy 10 مقادیر ایزومرهای تیروزین تشکیل شده متناسب با افزایش سطح دز پرتودهی افزایش یافت اما پس از آن، افزایش بیشتر دز پرتودهی بر افزایش تشکیل ایزومرهای تیروزین تأثیر قابل ملاحظه­ای نداشت. در یک دز ثابت، مقدار ایزومرهای تیروزین تشکیل شده در ابتدا با افزایش غلظت فنیل‌آلانین افزایش می­یابد اما افزایش بیشتر غلظت فنیل‌آلانین تأثیری در افزایش تشکیل ایزومرهای تیروزین ندارد. با دز کلی kGy10، استفاده از سرعت‌های دز
2.3kGy/h و 1.2kGy/h  تغییر قابل ملاحظه­­ای در مقدار ایزومرهای تیروزین تشکیل شده ایجاد نکرد. نتایج نشان داد در پرتودهی محلول‌های آبی فنیل‌آلانین، تشکیل ایزومرهای تیروزین تحت تأثیر دما، pH و اکسیژن محیط قرار می­گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Formation of Tyrosine Isomers in Aqueous Phenylalanine Solutions by Gamma Irradiation

نویسندگان [English]

  • F Aflaki
  • M Salahinejad
  • A Roozbehani
چکیده [English]

Ortho- tyrosine detection method can be used for detection of irradiated protein rich foods. Tyrosine isomers produced by gamma radiation of aqueous phenylalanine solutions at wide dose levels (0.1-50kGy) were examined to obtain basic information for o-tyrosine detection method of irradiated foods. Determination of tyrosines produced in aqueous phenylalanine solutions were carried out by high performance liquid chromatography and fluorescence detection. The detection limit of o-tyrosine was 0.01ppm and the linear range of calibration and the relative standard deviation of analysis was 50 ng and 4-13%, respectively. The amounts of the tyrosines increased with the irradiation level up to 10kGy and no further tyrosine formation was observed when the dose level was increased. At a constant dose level, the yield of tyrosines initially increased with the phenylalanine concentration, while with further increase of phenylalanine concentration no effect on increase of tyrosine yield was observed. When the dose rate was varying from 2.3kGy/h to 1.2kGy/h with a total amount of 10kGy in each case, there was no significant effect on tyrosine isomers formation was observed. Also the results showed that tyrosine yield was affected by temperature, pH and the presence of oxygen.
 

کلیدواژه‌ها [English]

  • Aqueous Phenylalanine Solution
  • O-Tyrosine
  • Gamma Irradiation
  • HPLC
  1. 1.    IAEA general confferecce, Thechnical Co- operation report for food irradiation, GC(40) INF/3, (1996).

 

  1. 2.    “Analytical detection methods for irradiated foods,” A review of the current literature, Joint FAO/IAEA division of nuclear techniques in food and agriculture, IAEA-TECDOC-587 Austria, March, (1991).

 

  1. 3.    H. Delincee, “Analytical methods to identify irradiated foods- a review, Radiat,” Phys. Chem. 63, 455-458 (2002).

 

  1. 4.    Y. Shimoyama, M. Ukai, H. Nakamura, “Advanced protocol for detection of irradiated food by electron spin resonance spectrometry,” 76, 1837-1839 (2007).

 

  1. 5.    E. Marchioni, P. Horvatovich, H. Charon, “Detection of irradiated ingredients included in low quantity in non irradiated food matrix,” J. Agrical & food Chem, 53, 3769-3773 (2005).

 

  1. 6.    R. Molins, “Food irradiation: principles and application,” Wiley Interscience, New York (2001).

 

  1. 7.    C.H. McMurray, “Detection methods for irradiated foods: current status, Cambridge,” UK: Royal Society of Chemistry (1996).

 

  1. 8.    L.R. Karam, M.G. Simic, “Formation of ortho- tyrosine by radiation and organic solvents in chiken tissue,”  J. Bio. Chem, 265 (20), 11581-11585 (1990).

 


 

 

  1. 9.    M. Miyahara, H. Ito, T. Nagasawa, “Determination of o- tyrosine production in aqueous solutions of phenylalanine irradiated with gamma ray using high performance liquid chromatography with Autometed pre-column derivatization and laser fluorometric detection,”  J. Health Sci, 46(3), 192-199 (2000).

 

  1. 10.              M.G. Simic, E.  Gajewski, M. Dizaroglu, “Kinetics and mechanisms of hydroxyl radical induced crosslinks between phenylalanine peptides,” Radiat. Phys Chem, 24, 465-473 (1986).

 

  1. 11.              S. Solar, W. Solar, N. Getoff, “Reactivity of OH with tyrosine in aqueous solution studied by pulse radiolysis,” J. Phys. Chem, 88, 2091- 2095 (1984).

 

  1. 12.              H. Zegota, K. Kolodziejczyk, M. Krol, B. Krol, “O-tyrosine hydroxylation by .OH radicals, Dopa formation in gamma irradiation aqueous solution,” Rdiat. Phys. Chem, 72, 25-33 (2005).

 

  1. 13.              M. Li, S. Carlson, J.A. Kinar, H. Perpall,  “HPLC and LC- Ms studies of hydroxylation of phenylalanine as assay for hydroxyl radicals generated from Udenfriend's reagent,” Biochem. Biophys. Res. Commun, 312, 316- 322 (2003).

 

  1. 14.              M.G. Simic, “Formation of o-tyrosine in aqueous phenylalanine solutions by gamma irradiation foods,” J. Agric. Food Chem, 26, 5-14 (1976).

 

  1. 15.              P. Krajinik, R.M. Quint, S. Solar, N. Getoff, G. Sntag, “Detection of irradiation of meats by HPLC determination for o-tyrosine using novel Laser fluorometric Detection, Z Natufrosch,” 50a, 864-870 (1995).

 

  1. 16.              W. Meier, R. burgen, D. Frohlich, “Analysis of o-tyrosine as a method for the identification of irradiated chicken and comparision with other methods,”  Radiat. Phys. Chem, 35, 332- 336 (1990).
  2. 17.              N. Chuaqui-offerman, T.  McDougall, “An HPLC method to determine o- tyrosine in chicken meat,” J. Agric. Food Chem, 39, 300-302 (1991).

 

  1. 18.              M. Miyahara, T. Nagasawa, “Identification of irradiation of boned chicken by determination of o-tyrosine and ESR spectrometry,” J. of Health Sci, 48, 79-82 (2002).

 

  1. 19.              W.G. Hein, T.J. Simat, H. Steinhart, “Determination of non protein bound o-tyrosine as a marker of the detection of irradiated shrimps,” Europ. Food  Res & Technol, 210 (4) (2000).

 

  1. 20.              H. Ito, “Identification of irradiation of boned chicken by determination of o-tyrosine and electron spin resonance spectrometry,” J. Health Sci, 48 (1), 79- 82 (2002).

 

  1. 21.              M. Dizdaroglu, E. Gajewski, M.G. Simic, H.C. Krutzsch, “Detecting irradiated foods: use of hydroxyl radical biomarkers,” Int. J. Radait. Biol, 43, 185- 193 (1983).

 

  1. 22.              C.T. Pedersen, “The o-tyrosine method for identification of irradiated chicken,” BCR workshop on potential new methods on detection of irradiated food, 13-15 Feb (1990).

 

  1. 23.              K.W. Bogl, “Methods for identification of irradiated food,” Radiat. Phys. Chem, 35, 301- 310 (1990).

 

  1. 24.              B.E. Proctor, D.S. Bhatia, “Influence of irradiation conditions on o-tyrosine formation in irradiated chicken meat,” Biochem. J, 51, 535-538 (1952).

 

  1. 25.              D. Wang, H.P. Schuchmann, C. Von Sonntag, Z. Naturforsch, “Analysis of o-tyrosine as a detection method of irradiated food,” 48b, 761-770 (1993).