تغییرهای ساختاری غشای پلی‌مری پرفلوروسولفونیک اسید بر اثر پرتودهی با گاما

نویسندگان

1 گروه فیزیک، دانشگاه پیام نور، صندوق پستی: 3697-19395، تهران ـ ایران

2 گروه فیزیک، دانشگاه بوعلی سینا، صندوق پستی: 4161-65174، همدان ـ ایران

3 پژوهشکده ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی، صندوق پستی: 3486-11365، تهران ـ ایران

چکیده

غشای پلی‌مری پرفلورو سولفونیک اسید (PFSA) یکی از مهم‌ترین مواد هادی پروتون، برای استفاده در پیل‌های سوختی با الکترولیت پلی‌مری است. در این پژوهش اثر پرتو گاما بر ساختار غشای پلی‌مری پرفلورو سولفونیک اسید مورد مطالعه قرار گرفت. نتایج نشان داد که ساختار غشا با افزایش دز جذب شده تغییر می‌کند. اثر پرتو بر تغییرهای ساختار غشا با استفاده از طیف جذب مریی- فرابنفش در گستره‌ی طول موج 190 تا nm 500، طیف زیرقرمز و الگوی پراش پرتو ایکس مورد پژوهش قرار گرفت. طیف جذب مریی- فرابنفش نشان داد که شدت قله‌های جذب با افزایش دز جذب شده افزایش می‌یاید. طیف‌سنجی زیرقرمز نمایان‌گر این بود که بر اثر پرتودهی، نوار جذب جدیدی در 1-cm 1773 ایجاد می‌شود و الگوی پراش پرتو ایکس نشان داد که بلورینگی با افزایش دز جذب شده افزایش می‌یابد. آزمون سختی‌سنجی ویکرز نشان داد که مقدار سختی نمونه با افزایش دز جذب شده افزایش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Structural changes of perfluorosulfonic acid polymer membrane (PFSA) under gamma-irradiation

نویسندگان [English]

  • Ghasem Forozani 1
  • Pezhman Shamshiri 2
  • Babak Zhaleh 2
  • Nasrin Sheikh 3
چکیده [English]

A perfluorosulfonic acid (PFSA) polymer membrane is an attractive proton-conducting material for polymer electrolyte to be used in fuel cells. In this study the effect of gamma irradiation on the structural changes in perfluorosulfonic acid membrane was investigated. The obtained results showed that the membrane structure changed by increasing the adsorbed dose. The irradiation effects on structural changes were investigated by optical absorption measurement in the wavelength of 190~500 nm, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction. The optical absorption measurement showed an increase in the absorption bands intensity by increasing the adsorbed dose. Moreover, the FT-IR spectra showed a novel absorption band at 1773 cm-1 after the irradiation and the XRD results indicated crystallinity improvement by increasing the absorbed dose. Vickers microhardness test showed that the hardness increased by increasing the absorbed dose.
 
 

کلیدواژه‌ها [English]

  • Structural change
  • Polymer membrane
  • Perfluorosulfonic acdi
  • Fuel cell
  • Polymer electrolyte
  • Gamma Irradiation

[1] A.J. Appleby, F.R. Foulkes, Fuel cell handbook, Van Nostrand Reinhold, New York (1989).

[2] Y. Konishi, B. Tsuchiya, S. Nagata, K. Toh, T. Shikama, Irradiation effect of gamma ray on the proton conducting polymer, J. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, NATO Security through Science Series A: Chemistry and Biology, (2007) 165–168.

[3] S. Litster, G. McLean, PEM fuel cell electrodes, Journal of Power Sources, 130 (2004) 61–76.

[4] S. Renaud, B. Ameduri, Functional fluoropolymers for fuel cell membranes, Prog. Polymer. Sci. 30 (2005) 644-687.

[5] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 25 (2000) 1463-1502.

[6] B. Smitha, S. Sridhar, A. Khan, Solid polymer electrolyte membranes for fuel cell applications, A review, Journal of Membrane Science, 259 (2005) 10-26.

[7] B. Bae, B.H. Chun, D. Kim, Surface characterization of microporous polypropylene membranes modified by plasma treatmen, Polymer, 42 (2001) 7879-7885.

[8] A. Ciszewski, I. Gancarz, J. Kunicki, M. Bryjak, Plasma-modified polypropylene membranes as separators in high-power alkaline batteries, Surface & Coatings Technology, 201 (2006) 3676–3684.

[9] H.Y. Yu, M.X. Hua, Z.K. Xua, Surface modification of polypropylene micro porous membranes to improve their antifouling property in MBR: NH3 plasma treatment, Separation and Purification Technology, 45 (2005) 8–15.

[10] H.Y. Yu, L.Q. Liu, Z.Q. Tang, M.G. Yan, J.S. Gu, X.W. Wei, Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR, Journal of Membrane Science, 311 (2008) 216–224.

[11] H.Y. Yu, Z.Q. Tang, L. Huang, G. Cheng, W. Li, J. Zhou, M.G. Yan, J.S. Gu, X.W. Wei, Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor, Water research, 42 (2008) 4341–4347.

[12] M.L. Steen, A.C. Jordan, E.R. Fisher, Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment, Journal of Membrane Science, 204 (2002) 341–357.

[13] J. Zhou, W. Li, J.S. Gu, H.Y. Yu, Surface modification of polypropylene membrane toimprove antifouling characteristics in a submerged membrane-bioreactor, Membrane Water Treatment, 1 (2010) 83-92.

[14] L. Liang, X. Feng, L. Peurrung, V. Viswanathan, Temperature sensitive membranes prepared by UV photo polymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes, Journal of Membrane Science, 162 (1999) 235-246.

[15] A. Qureshi, D. Singh, N.L. Singh, S. Ataoglu, A.N. Gulluoglu, A. Tripathi, D.K. Avasthi, Effect of irradiation by 140 Mev Ag11+ ions on the optical and electrical properties of polypropylene/TiO2 composite, Nuclear Instruments and Methods in Physics Research B. 267 (2009) 3456–3460.

[16] J.K. Shim, H.S. Na, Y.M. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes by γ-ray induced graft copolymerization and their solute permeation characteristics, Journal of Membrane Science, 190 (2001) 215–226.

[17] T. Thampan, S. Mahotra, J. Zhang, R. Datta, PEM fuel cell as a membrane reactor, Catalysis Today, 67 (2001) 15-32.

[18] M. Adachi, T. Navessin, Z. Xie, B. Frisken, S. Holdcroft, Correlation of in situ and ex situ measurements of water permeation through nafion NRE211 proton exchange membranes, Journal of the Electrochemical Society, 156 (2009) 782-790.

[19] S. Nagata, B. Tsuchiya, K. Saito, T. Shikama, Enhancement of protonic conductivity in the near surface regions of radiation induced polymer electrolyte membranes, Materials Issues in a Hydrogen Economy, (2009) 263-272.

[20] B. Tsuchiya, Y. Konishi, S. Nagata, T. Shikama, Interaction of water vapor with gamma-radiation-induced defects in proton conductive polymers, Solid State Ionics, 180 (2009) 585-588.

[21] A. Khoobroo, B. Fahimi, On the efficiency of the fuel cell vehicles with onboard hydrogen generation, Journal of Iranian Association of Electrical and Electronics Engineers, 5 (2008) 21-30.

[22] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 35 (2010) 9349-9384.

[23] Gh. Forozani, P. Shamshiri, N. Sheikh, Irradiation effect of gamma–ray on electrical characteristics of Perfluorosulfonic acid polymer membrane, J. Fuel Cell Science and Technology, 9 (2012) 034501-3.
[24] M. Falk, An infrared study of water in perfluorosulfonate membranes, Can. J. Chem. 58 (1980) 1496-1501.
[25] S. Quezado, J.C.T. Kwak, M. Falk, An infrared study of water–ion interactions in perfluorosulfonate (Nafion) membranes, Can. J. Chem. 62 (1984) 958-966.

[26] M. Fujimura, T. Hashimoto, H. Kawai, Small-angle X-ray scattering study of perfluorinated ionomer membranes, Macromolecules, 14 (1981) 1309–1315.

[27] S.H. Almeida, Y. Kawano, Effects of X-ray radiation on Nafion membrane, J. Polym. Degrad. Stab, 62 (1998) 291-297.

[28] A. Mahreni, A.B. Mohamad, A.A.H. Kadhum, W.R.W. Daud, S.E. Iyuke, Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity, Journal of Membrane Science, 327 (2009) 32–40.