بررسی اثر پلاریزاسیون اسپینی در انرژی ورودی مورد نیاز و بهره انرژی برای سوخت 3He

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، صندوق پستی: 165، ارومیه - ایران

چکیده

برای تعیین بهره انرژی همجوشی و گداخت، همچنین برای تغییر دما با زمان در مورد ساچمه‌های فشردة DT، D3He، DD، H11B و 3He3He در فضای عاری از میدان مغناطیسی تاکنون محاسبات متعددی انجام شده است. مقایسة نتایج تجربی بهرة انرژی با نتایج شبیه‌‌سازی همجوشی در میدان لختی برای مدل های گداخت جرقه‌ایو گداخت حجمی، درستی و دقت مدل بکار برده شده را نشان می‌دهد. یکی از شرایط مورد نیاز برای تولید الکتریسیته در مقیاس صنعتی افزایش بهرة انرژی همجوشی همراه با کاهش انرژی ورودی می‌باشد. در این مقاله با استفاده از مدل گداخت حجمی برای ساچمه‌های سوختی 3He3He در شرایط مختلف، بهرة انرژی و تغییرات انرژی پلاسما با زمان در شرایط پلاریزاسیون اسپینی هسته‌ای (در یک میدان مغناطیسی) حساب شده است. مقایسة نتایج حاصل از پلاریزاسیون اسپینی با نتایج مربوط به سوخت غیرپلاریزه، نشان می‌دهد که پلاریزاسیون اسپینی هسته‌ای در کاهش انرژی اولیه مورد نیاز برای رسیدن به شرایط همجوشی و افزایش بهرة گداخت مؤثر است، حتی در برخی از موارد منجر به کاهش 35 درصدی انرژی ورودی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

An Overview of Spin Polarization Effects on Initial Needed Energy and Fusion Gain for 3He Fuel

نویسندگان [English]

  • R Khoda-bakhsh
  • A Soltanian
چکیده [English]

Up to now, various calculations have been done for evaluating fusion energy gain and time dependence of temperature of compressed pellets such as DT, D3He, DD, H11B and 3He3He in the absence of magnetic fields. Experimental results and their comparison with the results of simulations based on central spark ignition model and volume ignition model, prove the accuracy of our computational code. Industrial usage of fusion energy needs an increase in fusion gain and a reduction in driver energy. So that here, using volume ignition model for nuclear spin polarized pellets (in a magnetic field), the energy gain is calculated. The comparison between results associated with the polarized and non polarized fuel, shows that spin polarization is an effective method for reducing the initial needed energy for ignition (up to 35%) and increasing the fusion gain.

کلیدواژه‌ها [English]

  • Fusion
  • Spin Polarization
  • Volume Ignition
  • Helium
  • Initial Energy
  • Energy Gain
  1. 1.    H. Hora, G.H. Miley, “Low cost energy by laser driven nuclear fusion,” (Deutsche Physikalische Gesellschaft) Sept(2006).

 

  1. 2.     C.L. Smith, “The need for fusion,” Fusion Engineering and Design 74, 3-8 (2005).

 

  1. 3.    Y. Lechon, y. Lechon, H. Cabal, M. Varela, “A global energy model with fusion” Fusion Engineering and Design 75- 79, 1141-1144 (2005).

 

  1. 4.    R. Khoda-Bakhsh, H. Hora, G.H. Miley, “Advanced fusion fuel for inertial confinement fusion”, the special issue of fusion technology, Fusion Technology, 22, 50 (1992).

 

  1. 5.    رسول خدابخش، « ساچمه های جوش واداشته با لیزر»، مجموعه مقالات دومین کنفرانس بین المللی لیزر و کاربردهای آن،      129-137، شهریور ماه1372.                                                       

 

  1. 6.    R. Khoda-Bakhsh, H. Hora, G.H. Miley, “Effects of reactions on the volume ignition of laser-driven D3He fusion pellets,” Fusion Technology, 24, 28 (1993).                                                           

 

  1. 7.    R. Khoda-Bakhsh, “Volume ignition of microspheres,” Nucl. Instr. and Meth. A 330, 268 (1993).

 

  1. 8.     R. Khoda-Bakhsh, “Laser interaction and related plasma phenomena”, Am. Inst. Phys. NewYork, 289 (1995).

 

 

 

 
 

3He

 

 

 


  1. 9.     فاطمه زمانی، رسول خدابخش، « معرفی ساچمه‌های      به عنوان منبع سوختی نیروگاه‌های همجوشی پیشرفته»، چکیده مقالات اولین کنفرانس هسته ای ایران،57 ، اسفند ماه 1383.                             

 

10. Lawson, “Some criteria for power producing from thermonuclear reaction,” Proc. Phys. Sco. B 70, 6 (1957).

 

 

11. S.O. Dean, “Opportunities in construction phase of the international thermonuclear experimental reactor,” Journal of Fusion Energy, 18, No.2, (1999).

 

 

 


12. W.D. D’haeseleer, “The importance of fusion development towards a future energy source,” Fusion Engineering and Design, 66-68, 3-15 (2003).

 

13. N.B. Morley, M.A. Abdou, M. Anderson, P. Calderoni, J. Kurtz, “Overview of fusion nuclear technology in the US”, Fusion Engineering and Design, 81, 33-43 (2006).

 

14. D. Pfirsch and K.H. Schmitter, “On the economic prospects of nuclear fusion with tokamaks,” Fusion Technology 15, 1471 (1989).

 

15. H. Hora, “New physics of high temperature and plasmas”, World Science, Singapore (1991).

 

16. J. Meyer-ter-Vehn, “On energy gain of fusion targets: The model of Kidder and Bodner improved,”  Nucl. Fusion, 22, 561 (1982).

 

17. H. Hora, G.H. Miley, “New avenues to success in laser fusion,” Laser Focus, 20(No.2) 59(1984).

 

  1. 18.  H. Hora, “Plasma at high temperature and density,” Springer Verlag,Heidelberg (1991).

 

19. H. Hora, “Volume ignition in pellet fusion to overcome the difficulties of  central ignition,”  Z. Naturforsch 42 A 1239 (1987).

 

20. Yamanaka C. Nakai S. “Thermonuclear neutron yield of 1012 achived with Gekko XII Green Laser,” Nature 319, 757(1986).

 

21. R.R. Freeman, C. Anderson, J.M. Hill, J. King, “High-intensity lasers and controlled fusion,” Eur. Phys. J. D, 26, 73-77 (2003).

 

22. A. E. Dabiri, “An overview of fusion reactions,”  Nucl. Instr. and  Meth. A 271, 71 (1988).