حذف جذبی فلزهای سنگین از پس‌آب تأسیسات فراوری شیمیایی اورانیم اصفهان با تفاله‌ی نیشکر آلاییده شده با نانوذرات مغناطیسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 گروه مهندسی معدن، دانشکده ی فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، صندوق پستی: 143-14115، تهران ـ ایران

چکیده

جذب زیستی فلزهای سنگین از پس‌آب تأسیسات فراوری شیمیایی اورانیم اصفهان با استفاده از «زیست‌جاذب مغناطیسی» متشکل از تفاله‌ی نیشکر آلاییده شده با نانوذرات منیتیت (4O3Fe) و بهینه‌سازی پارامترهای فرایندی آن به روش ناپیوسته مورد بررسی آزمایشگاهی قرار گرفت. نتایج جذب نشان داد که زیست‌جاذب مغناطیسی تهیه شده عملکرد خوبی در جذب یو‌ن‌های فلزهای سنگین (U، Ni و Cu) دارد. علاوه بر آن pH حدود 5 و زمان تماس 90 دقیقه به عنوان شرایط بهینه‌ی فرایند جذب زیستی یون‌های سنگین به دست آمد. هم‌چنین داده‌های سینتیکی با معادله‌ی سرعت شبه مرتبه‌ی دوم به خوبی برازش شدند. از طرف دیگر، با افزایش مقدار زیست توده‌، ظرفیت جذب کاهش یافت. بررسی نتایج طیف‌سنجی تبدیل فوریه‌ی زیرقرمز قبل و بعد از تماس جاذب با پس‌آب نشان داد که در جذب فلزهای سنگین از پس‌آب، بیش‌ترین نقش از آنِ گروه‌های عاملی هیدروکسیل، کربوکسیل و آمین روی جاذب بوده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Adsorptive remval of heavy metals from Esfahan uranium conversion facility (UCF) wastewater by bagass impregnated with magnetic nanoparticles

نویسندگان [English]

  • Saeid Alamdarmilani 1
  • kaveh Darabi 2
  • Behzad Maraghemianji 1
  • Ahmad Amrolah Abhari 1
چکیده [English]

 The adsorptive removal of heavy metals (U, Ni and Cu) from Esfahan Uranium Conversion Facility (UCF) wastewater was studied in the laboratory by means of batch method using a magnetic biosorbent composed of nanoparticles of magnetite coverd with sugarcane bagas. The findings indicated that the prepared magnetic biosorbent is suitable for the removal of heavy metals. Furthemore, pH of 5 and equilibrium time of 90 min were adequate to set out the optimum condition of heavy metal biosorption process. The kinetic data were fitted well to a pseudo-second-order rate equation. On the other hand, the results showed that biosorption capacity is decreased by increasing the biosorben dosage. The FT-IR analysis of the adsorbent before and after entering into the contact with wastewater showed that functional groups of hydroxyl, carboxyl and amine have the most important role in the heavy metal biosorption.
 
 
 

کلیدواژه‌ها [English]

  • Heavy metals removal
  • Magnetic biosorbent
  • Bagass
  • Wastewater
  • Kinetics

[1] K. Chandra Sekhar, C.T. Kamala, N.S. Chary, Y. Anjaneyulu, Removal of Heavy metals using a plant biomas with reference to evironemental control, Int. J. Miner. Process, 68 (2003) 37-45.

[2] S.S. Ahluwalia, Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technol, 08 (2007) 2243-2257.

[3] N. Chatterjee, Biosorption of cadmium by fungi, Submitted as a major project in partial fulfillement of the requirements for the award of degree of Master of Science in Biotechnology, Biotech. Environ. Sci, Deemed University (2006).

[4] B. Volesky, Sorption and Biosorption, BV Sorbex, Inc., Canada, (2003).

[5] R.R. Sheha, E. Metwally, Equilibrium isotherm modeling of cesium adsorption on magnetic materials, Journal of Hazardous Materials, 143 (2007) 354-361.

[6] M. Yamaura, C.H. Costa, A.P.G. Yamamura, Adsorption studies for Cr(VI) onto magnetic particles covered with chitosan, Proceeding of 2007 International Nuclear Atlantic Conference, Santos, Brazil, Sep30–Oct 5 (2007).

[7] A.P. G. Yamamura, M. Yamaura, Preparation and evaluation of adsorption properties of the magnetic bagasse, Proceeding of 2007 International Nuclear Atlantic Conference, Santos, Brazil, Sep30–Oct5 (2007).

[8] M. Yamaura, L.P. da Silva, L.Z. de Souza, R.A. Monteiro, Carregador magnético de CMPO para adsorcao de U e Th, Proceeding of 2005 International Nuclear Atlantic Conference, Santos, Brazil, Aug 28–Sep 2 (2005).

[9] M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, J. Magnetism and Magnetic Materials, 279 (2004) 210-217.

[10] L.C.B. Stopa, M. Yamaura, Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption, International Nuclear Atlantic Conference-INAC 2009, Rio de Janeiro, RJ, Brazil, September 27 to October 2 (2009).
[11] A.P.G. Yamamura, M. Yamaura, C.H. Costa, Magnetic biosorbent for removal of uranyl ions, International Nuclear Atlantic Conference-INAC 2009 Rio de Janeiro, RJ, Brazil, September 27 to October 2 (2009).

[12] Fathi Habashi, A Texbook of Hydrometallurgy, Department of mining and metallurgy, Laval niversity, Quebec city, Canada, (1993) 430-440.

[13] A. Ahmadpour, D.D. Do, The preparation of activated carbon from coal by chemical and physical activation, Carbon, 34(4) (1996) 471-479.

[14] S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24 (4) (1898) 1–399.

[15] G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites. Water Research, 18 (1984) 1501-1507.

[16] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. AM. Soc. Civ. Eng., 89 (1963) 31-60.

[17] R. Gong, Y. Ding, H. Liu, Q. Chen, Z. Liu, Lead biosorption and desorption by intact and pretreated spirulina maxima biomass, Chemosphere, 58(1) (2005) 125-30.

[18] P. King, N. Rakesh, S. Beena Lahari, Y. Prasanna Kumar, V.S.R.K. Prasad, Biosorption of zinc onto Syzygium cumini L: Equilibrium and Kinetic studies, Chemical Engineering Journal, 144 (2008) 181-187.

[19] P. Salehi, B. Asghari, F. Mohammadi, Biosorption of Ni(II), Cu(II) and Pb(II) by Punica gerana-tum from Aqueous Solutions, Journal of Water Resource and Protection (JWARP), 2 (2010) 701-705.

[20] A. Kapoor, T. Viraraghavan, Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol, 61 (1997) 221–227.

[21] A. Kapoor, T. Viraraghavan, D.R. Cullimore, Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol, 70 (1999) 95–104.
[22] X.P. Liao, B. Shi, Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber, Environ. Sci. Technol, 39 (2005) 4628–4632.

[23] S. Schiewer, Multi-metal ion exchange in biosorption, Environ. Sci. Technol, 30 (1996) 2921-2927.

[24] Christian Brothers University, lecture note (2004).

[25] C. Gok, S. Aytas, Biosorption of uranium(VI) from aqueous solution using calcium alginate beads, J. Hazard. Mater, 168(1) (2009) 369-375.

[26] R.M. Gabr, S.H.A. Hassan, A.A.M. Shoreit, Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. International biodeterioration & Biodegradation, 61 (2008) 195-203.

[27] Moataza, M. Saad, Chelating Ability of the Chitosan-glucan Complex from Aspergillus niger NRRL595 Biomass Recycling in Citric Acid Production, Research Journal of Agriculture and Biological Sciences, 2(3) (2006) 132-136.

[28] G.C. Panda, S.K. Das, A.K. Guha, Biosorption of cadmium and nickel by functionalized husk of Lathyrus sativus, Colloids Surf B Biointerfaces, 62(2) (2008) 173-179.

[29] P.X. Sheng, Y.-P. Ting, J.P. Chen, L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, Journal of Colloid and Interface Science, 275(1) (2004) 131-141.