جذب زیستی تنگستن از محلولهای آبی با استفاده از سویه جدید Bacillus sp. MGG-83، جداسازی شده از تالاب انزلی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی هسته‌ای، مرکز تحقیقات هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 3486-11365، تهران - ایران

2 گروه میکروبیولوژی، دانشکده علوم، دانشگاه آزاد اسلامی واحد قم، قم - ایران

3 گروه میکروبیولوژی، دانشکده علوم، دانشگاه الزهرا (س)، تهران - ایران

4 گروه بیوتکنولوژی هسته‌ای، مرکز تحقیقات هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 3486-11365، تهران - ایرانگروه میکروبیولوژی، دانشکده علوم، دانشگاه الزهرا (س)، تهران - ایران

چکیده

در این کار پژوهشی 38 نمونه آب و لجن از تالاب انزلی گرفته شد. بعد از کشت نمونه‌ها و انجام مراحل خالص‌سازی، 100 سویه باکتریایی جدا شد. ظرفیت جذب تنگستن در تمام سویه‌ها مورد بررسی قرار گرفت. در نهایت تنها یک سویه دارای بیشترین مقدار جذب تنگستن بـود (65.4 mg/g dry wt). ایـن سـویـه MGG-83 نـامیده شد. در بررسی‌های بیشتر مشخص شد که سویه MGG-83 متعلق به جـنس بـاسیـلوس است. حـداکثـر جـذب تنگستن در 2=pH صورت می‌گیرد. جـذب تنگستن تـوسـط Bacillus sp. MGG-83 با افزایش غلظت آن افزایش یافت، تا جاییکه در غلظت mg/l600 جذب آن به مقدار 545.6 mg/g dw رسید. جذب تنگستن در 5 دقیقه اولیه مجاورت سریع بود و در ادامه، روند کندی نشان داد. تیمار سلولها با سدیوم آزید و 2 و 4 دی‌نیتروفنل نشان داد که 80% جذب تنگستن غیروابسته به متابولیسم و 20% جذب آن وابسته به متابولیسم است. سلولهایی که با حرارت اتوکلاو کشته شده بودند تنها 11% کاهش در جذب تنگستن نشان دادند. جذب تنگستن با افزایش مقدار وزن خشک توده سلولی افزایش یافت (87% در mg20 وزن خشک توده سلولی و تقریباً 100% در mg25 وزن خشک توده سلولی). محدوده دمایی C45-20 تأثیر چندانی بر جذب تنگستن نداشت.

کلیدواژه‌ها


عنوان مقاله [English]

Biosorption of Tungsten from Aqueous Solutions by New Strain of Bacillus sp. MGG-83 Isolated from Anzali Lagoon

نویسندگان [English]

  • S Ghorbanzadeh Mashkani 1
  • F Malekzadeh 2
  • H Ghafourian 1
  • M.R Soudi 3
  • P Tajer Mohammad Ghazvini 4
چکیده [English]

In this study 38 water and sludge samples were collected from various areas of Anzali lagoon and 100 strains were isolated when the samples were cultured in the media. Among them, only one strain showed the maximum absorption capacity (65.4 mg/g dry wt). It was tentatively called MGG-83 strain. Further investigations proved that the strain MGG-83 belonged to the genus of Bacillus. The maximum uptake of tungsten was obtained at pH 2. The tungsten taken up by the Bacillus sp. MGG-83 increased by increasing the concentration of the tungsten. At 600mg/l, the uptake was 545.6 mg/g dry wt. The uptake of tungsten within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter. When sodium azide and 2,4 dinitrophenol were used, it was evident the 80% of the absorbed tungsten is independent of the metabolism and 20% depends on the metabolism. When the cells were treated by the heat, the tungsten uptake decreased to 11%. The tungsten uptake increased with increasing in biomass of dry weight of the cells (87% at 20 mg biomass; 100% at 25mg biomass). The applied temperature in the range of 20-450C did not show any significant change in the uptake.

کلیدواژه‌ها [English]

  • Biosorption
  • Tungsten
  • Bacillus sp
  • Heavy Metals
  • Anzali lagoon
  1. 1.    N.P. L’vov, A.N. Nosikov, A.N. Antipov, “Tungsten containing enzymes,” Biochemistry (Moscow). 67, 196-200 (2002).

 

  1. 2.    H.T. Evans, F.T. Manheim, S. Landegren, Molybdenum. In: “Handbook of Geochemistry,” (Wedenpohl, K.H., Ed.), Vol.11/5, Chapter 42. Springer Verlag, Berlin, New York (1974).

 

  1. 3.    M.J. O'Neil, A. Smith, P.E. Heckelman, In: “The Merck index. An encyclopedia of chemicals, drugs, and biologicals,” Whitehouse Station, NJ: Merck Research Laboratories, 1748 (2001).

 

  1. 4.    J. Vucina and R. Han , “Production and therapeutic use of rhenium-186, 188 the future of radionuclides,” Med Pregl. 56, 362-365 (2003).

 

  1. 5.    W. Sahle, S. Krantz, B. Christensson, “Preliminary data on hard metal workers exposed to tungsten oxide fibers,” Sci Total Environ. 191, 153-167 (1996).

 

  1. 6.       L.P. Wackett, A.G. Dodge, L.B.M Ellis, “Microbial Genomics and the Periodic Table,” Appl and Environ  Microbiol. 70, 647-655 (2004).

 

  1. 7.    D.H. Nies, “Microbial heavy-metal resistance,” Appl Microbiol Biotechnol. 5, 730-750 (1999).

 

  1. 8.      A.I. Zouboulis, M.X. Loukidou, K.A. Matis, “Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils,” Process Biochemistry. 39, 909-916 (2004).

 

 

 

 

 

  1. 9.       B. Volesky, “Biosorbent Materials,” Biotechnol. Bioeng. Symp. 16,121-126 (1986). 

 

10. N. Liu, J. Liao, S. Luo, Y. Yang, J. Jin, T. Zhang, P. Zhao, “Biosorption of 241Am by immobilized Saccharomyces cerevisiae,” J. Radioanalytical and Nuclear Chemistry. 258, 59-63 (2003).

 

  1. 11.              J.G. Holt, N.R. Krieg, P.H.A. Sneath, J.T Staley, S.T. Williams, “Bergey’s Manual of Systematic Bacteriology”, Vol. 1–4. Williams and Wilkins, Baltimore (1989).

 

  1. 12.              E.P. Welsch, “A rapid geochemical spectrophotometric determination of tungsten with dithiol,” Talanta. 30, 876-878 (1983).

 

  1. 13.              A. Lopez, N. Lazano, J.M. Priego, A.M. Marqus, “Effect of pH on the biosorption of Nickel and other heavy metals by Pseudomonas fluoresces 4F39,” J. Industerial. Microbiol & Biotechnol. 24, 146-151 (2000).

 

14. A.M. Marqus, X. Roca, M.D. Simon-Pujuol, M.C. Fuste, F. Congregado, “Uranium accumulation by Pseudomonas sp. EPS 5028,” Appli. Microbiol. Biotechnol. 35, 406-410 (1991).

 

  1. 15.              M.P. Pons and M.C. Fuste, “Uranium uptake by immobilized cell of Pseudomonas strain EPS 5028,” Appli. Microbiol. Biotechnol. 39, 661-665 (1993).

 

N. Goyal, S.C. Jain, U.C. Banerjee, “Comparative studies on the microbial adsorption of heavy metals,” Advances in Environmental Research 17-7, 311-319 (2003).