بررسی تنوع ژنتیکی حاصل از دو جهش‌زای فیزیکی (پرتو گاما، باریکه‌ی الکترونی) با استفاده از نشان‌گرهای دی ان ا چندریختی تصادفی تقویت شده در گیاه گندم نان رقم طبسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، صندوق پستی: 775-14515، تهران ـ ایران

2 پژوهشکده ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی، صندوق پستی: 3486-11365، تهران ـ ایران

چکیده

 تنوع ژنتیکی حاصل از دو جهش‌زای فیزیکی متفاوت (پرتو گاما، باریکه‌ی الکترونی) در دزهای مختلف (50 تا Gy 400) و دو رطوبت متفاوت (5/6 و %5/12) در دانه‌های گندم نان رقم طبسی با استفاده از نشان‌گرهای دی ان ا چندریختی تصادفی تقویت شده مورد بررسی قرار گرفت. بیش‌ترین میانگین ناجور تخم‌زایی در جمعیت 2 (با مقدار 155/0) و کم‌ترین مقدار آن در جمعیت 5 (با مقدار 042/0) مشاهده شد. براساس نتیجه‌های به دست آمده، بیش‌ترین فاصله‌ی ژنتیکی یا کم‌ترین تشابه ژنتیکی، بین جمعیت TE1M (ردیف‌های جهش یابنده‌ی نسل 1 رقم طبسی که با الکترون جهش یافته بودند) و جمعیت TE2M (ردیف‌های جهش یابنده‌ی نسل 2 رقم طبسی که با الکترون جهش یافته بودند) مشاهده شد. کم‌ترین فاصله‌ی ژنتیکی یا بیش‌ترین تشابه ژنتیکی بین جمعیت TG2M (جمعیت ردیف‌های جهش یابنده‌ی نسل 2 رقم طبسی که با پرتو گاما جهش یافته بودند) و جمعیت TE2M (جمعیت ردیف‌های جهش یابنده‌ی نسل 2 رقم طبسی که با الکترون جهش ‌یافته بودند) مشاهده شد. تجزیه‌ی خوشه‌ای پنج جمعیت ردیف‌های جهش یافته و شاهدهای رقم طبسی براساس مقدار تشابه ژنتیکی و با استفاده از روش جفت گروه بدون وزن با میانگین حسابی انجام و نمودار درختی با برش نمودار از نقطه تشابه 89/0 دو گروه حاصل شد. براساس نتایج به دست آمده، تنوع بین جمعیت‌ها معنی‌دار و بیش‌تر از تنوع درون جمعیت‌ها بود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the genetic diversity arising from two physical mutagens (gama ray, electron beam) using random amplified polymorphic DNA markers in the (Triticum aestivum L.) plant, Tabasi cultivar

نویسندگان [English]

  • Fariba Zarrabi ahrabi 1
  • Ahmad Majd 1
  • Abbas Majdabadi 2
  • Taher Nejad Sattari 1
چکیده [English]

 This article aims at investigating the genetic diversity arising from two physical mutagens (gamma ray, electron beam) with different doses (50-400 Gy) and two different levels of humidity (6.5% and 12.5%) in the (Triticum aestivum L.) plant in Tabasi cultivar, using RAPD markers. The maximum and minimum average rates of heterozygosity were obtained in the second and the fifth populations (0.155 and 0.042), respectively. Based on the obtained results, the highest genetic distance or the lowest genetic similarity was observed between M1TE population (the first generation mutant lines mutated by electron) and M2TE population (the second generation mutant lines mutated by electron). The lowest genetic distance or the highest genetic similarity was found between M2TG (the second generation mutant lines of mutated by gamma ray) and M2TE (the second generation mutant lines mutated by electron) populations. Five mutant lines and Tabasi species witnesses were investigated based on common genetic values using UPGMA cluster analysis. Cutting the obtained dendrogram from the similar point (0.89), two groups were achieved. Based on the obtained results the inter-population diversity was more significant than the intra-population diversity.
 

کلیدواژه‌ها [English]

  • RAPD
  • Gamma Ray
  • Electron Beam
  • Triticum aestivum
  • Tabasi cultivor

[1] M.A. Malik, F. Zahoor, Weed biomass and economic yield of wheat (Triticum aestivum) as influenced by chemical weed control under rainfed conditions, African Journal of Biotechnology, 11 (7) (2012) 1567-1573.

[2] A. Khan, M. Khaliq, Cytogenetics and evolution of Triticum aestivum L. em Thell, International J. of agriculture and biology, 7 (3) (2005) 527-534.

[3] J. Salse, V. Chagué, New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides, BMC Genomics, 9 (555) (2008) 1-12.

[4] P.K. Gupta, R.K. Varshney, The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113 (2000) 163-185.

[5] M. Asif, DNA fingerprinting studies of some wheat (Triticum aestivum) genotypes using random amplified polymorphic DNA (RAPD) analysis, Pak. J. Bot, 37 (2) (2005) 271-277.

[6] I. Piri, M. Babayan, The use of gamma irradiation in agriculture, African Journal of Microbiology Research, 5 (32) (2011) 5806-5811.

[7] C. Tenley French, Comparison of the mutagenic potential of 17 physical and chemical agents analyzed by the flow cytometry mutation assay, Mutation Research, 602 (2006) 14-25.

[8] IAEA, Developments in Mutation Assisted Plant Breeding, (2010).

[9] S.G. Wi, B.Y. Chung, Effects of gamma irradiation on morphological changes and biological responses in plants, J. Micron, 38 (2007) 553-564.

[10] N. Mashev, G. Vassilev, K. Ivanov, A study of N-allyl N-2 pyridyl thiourea and gamma radiation treatment on growth and quality of peas and wheat, Bulgerian J. Plant Physiol, 21 (4) (1995) 56-63.

[11] Who, High-dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10kGy, Safety and Nutritional Adequacy of Irradiated Food, WHO, Geneva (WHO Technical Report Series no: 890), (1994) 120-124.

[12] S. Lee, M. Lee, K. Song, Effect of gamma-irradiation on the physicochemical properties of gluten films. Food Chem, 92 (2005) 621-925.

[13] Z. Hong, X. Jing Zao, Effects of high-energy-pulse-electron beam radiation on biomacromolecules, Springer, Sci China Ser B-Chem, 51 (1) (2008) 86-91.

[14] A. Alberti, S. Bertini, G. Gastaldi, Electron beam irradiated textile cellulose fibres: ESR studies and derivatisation with glycidyl methacrylate (GMA). Eur. Polym. J., 41 (2005) 1787-1797.

[15] D. Patnaik, Wheat biotechnology, EJB Electronic Journal of Biotechnology, 4 (2) (2001).

[16] M.D. Edwards, C.W. Stuber, Molecular-Marker-Facilitated Investigations of Quantitative-Trait Loci in Maize, I. Numbers, Genomic Distribution and Types of Gene Action, Genetics Society of America, 116 (1987) 113-125.

[17] S.D. Tanksley, C.M. Rick, Isozymic gene linkage map of the tomato: applications in genetics and breeding. Theor. & Appl. Genet, 57 (1980) 161-170.

[18] S.D. Tanksley, N.D. Young, A.H. Paterson, M.W. Bonierbale, RFLP mapping in plant breeding: new tools for an old science. Bio/Technology, 7 (1989) 257-264.

[19] B. Burr, F.A. Burr, Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations, Trends Genet, 7 (2) (1991) 55-60.

[20] Y.G. Liu, K. Tsunewaki, Restriction fragment length polymorphism analysis of wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn. J. Genet, 66 (1991) 617-633.

[21] M. Mohan, S. Nair, Genome mapping, molecular markers and marker assisted selection in crop plants, Molec breed, 3 (1997) 87-103.

[22] R. Bernatzky, S.D. Tanksley, Genetics of actin-related sequences in tomato, Theoretical and Applied Genetics, 72 (3) (1986) 314-321.

[23] G. Kochert, RFLP technology. DNA-based markers in plants, (1994) 8-38. In: Phillips, R.L. and Vasil, I.K. (Eds.). Kluwer Academic Publishers, Dordrecht.

[24] K. Kleppe, H.G. Khorana, Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J. Mol. Biol, 56 (1971) 341-361.

[25] K.B. Mullis, F.A. Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol, 155 (1987) 335-350.

[26] R.K. Saiki, S. Sharf, Faloona, 'Enzymic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia', Science, 230 (1985) 1350-1354.

[27] J. Williams, A.R. Kubelik, K.J. Livak, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acid Res, 18 (1990) 6531-6535.

[28] J. Welsh, M. McClelland, Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers, Nucleic Acid Res, 18 (1990) 7213-7218.

[29] M. McClelland, J. Welsh, RNA fingerprinting and differential display using arbitrarily primed PCR, Trends in genetics, 11 (1995) 242-246.

[30] C.J. Jones, Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories, Mol. Breed, 3 (1997) 381-390.

[31] S. Bozari, O. Aksakal, Application of random ampified polymorphic DNA (RAPD) to detect genotoxic effect of trifluralin on maize (Zea mays), Departemant of biology Turkey, 46 (22) (2012) 12527-12533.

[32] P. Pepo, Comparison of RAPD and AFLP analysis in some Maize (Zea mays L.) lines and hybrids, J. of agricultural sciences, Debrecen, 24 (2006) 3-7.
[33] F. Ngezahayo, Somaclonal Variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis, J. appl. gene, 48 (4) (2007) 329-336.

[34] M. Asif, M. Rahman, Genotyping analysis of six maize (Zea mays L.) hybrids and fingerprinting technology, Pak. J. Bot, 38 (5) (2006) 1425-1430.

[35] F. Bered, Genetic variability in wheat (Triticum aestivum L.) germplasm revealed by RAPD markers, Crop Breeding and Applied Biotechnology, 2 (4) (2002) 499-506.

[36] H. pakniyat, Tavakol, RAPD markers associated with drought tolerance in bread Wheat (Triticum aestivum L.), Pakistan. J. of Biological sciences, 10 (18) (2007) 3237-3239.

[37] Gh.A. Nematzadeh, Mapping the Gene for Aroma in Rice (Oryza sativa L.) by Bulk Segregant Analysis via RAPD Markers, J. Agric. Sci. Technol, 6 (2004) 129-137.

[38] M.R. Naghavi, M. Malaki, H. Alizadeh, An Assessment of Genetic Diversity in Wild Diploid Wheat Triticum boeoticum from West of Iran Using RAPD, AFLP and SSR Markers, Agr. Sci. Tech, 11 (2009) 585-598.

[39] Plant DNA Extraction Protocol for DarT.

[40] F.C. Yeh, Y. Rong-Cai, T. Boyle, POPGENE VERSION 1.32, University of Alberta, Center for International Forestry Research: Edmonton, Alberta, Canada (1998).

[41] N. Takahata, M. Nei, FST and GST statistics in the finite island model, Genet, 107 (1984) 501-504.

[42] M. Nei, Genetic distance between populations, Am. Nat, 106 (1972) 283-292.

[43] M. Nei, Statistics an DNA analysis of gene diversity in subdivided populations, Ann. Hum. Genet, 41 (1977) 225-233.

[44] M. Nei, Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci, 70 (1973) 3321-3323.

[45] M. Nei, Molecular phylogeny and genetic diversity analysis. Pennsylvania State University, University Park, PA 16802, USA, (1978).

[46] M. Nei, N. Takezaki, T. Sitnikova, Assessing molecular phylogenies, Sci, 267 (1995) 253-254.

[47] M. Nei, W.H. Li, Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. USA, 76 (1979) 5269-5273.

[48] H. Agrama, M.R. Tuinstra, Phylogenetic diversity and relationship among sorghum accessions using SSRs and RAPDs, Afr. J. Biotechnol, 10 (2003) 334-340.

[49] M. Kimura, J.F. Crow, The number of alleles that can be maintained in a finite population, Genet, 49 (1964) 725-738.

[50] P.E. Smouse, R. Peakall, E. Gonzales, A heterogeneity test for fine-scale genetic structure, Mol. Eco, 17 (2008) 3389-3400.

[51] N. Beck, R. Peakall, R. Heinsohn, Social constraint and an absence of sexbaised dispersal drive fine-scale genetic structure in white-winged choughs, Mol. Eco, 17 (2008) 4346-4358.

[52] J. Shlens, A tutorial on principal component analysis, (2005) 1-13, http://www. sn/salk.edu/shlens/.

[53] A. Iqbal, Study of genetic divergence among wheat genotypes through random amplified polymorphic DNA, Genet. Mol. Res, 6 (3) (2007) 476-481.

[54] P. Raghunathachari, V.K. Khanna, RAPD analysis of genetic variability in Indian scented rice germplasm (Oryza sativa L.), Current science, 79 (7) (2000) 994-998.

[55] N. Kanawapee, Genetic diversity analysis of rice cultivars (Oryza sativa) differing in salinity tolerance based on RAPD and SSR markers, Electronic. J. of biotechnology, (2011) 1-10.
[56] R. El-Bakatoushi, Genetic diversity of winter wheat (Triticum aestivum L.) growing near a high voltage transmission line, ROM. J. BIOL. PLANT BIOL, 55 (2) (2010) 71-87.

[57] R. Morita, M. Kusaba, Molecular characterization of mutations induced by gamma irradiation in rice, Genes Genet Syst, 84 (5) (2009) 361-370.

[58] W.M. Bhutta, A. Shahzad, J. Akhtar, Assessment of genetic divergence among wheat (Triticum aestivum) genotypes using random amplified polymorphic DNA(RAPD) analysis, Biologia, Bratislava, 60 (6) (2005) 671-674.

[59] M.F. Ahmed, Assessment of genetic diversity among Pakistani wheat (Triticum aestivum L.) advanced breeding lines using RAPD and SDS-PAGE, Institute of Agricultural Biotechnology & Genetic Resources, 13 (3) (2010) 1-10.

[60] S. Mitra, K.M. Nasiruddin, E.H. Chowdhury, Molecular analysis of hexaploid wheat (Triticum aestivum L.) cultivars by RAPD markers, Plant Tissue Cult. & Biotech, 19 (1) (2009) 35-44.

[61] S.H.M. Abd-El-Haleem, Genetic analysis and RAPD polymorphism in some Durum wheat genotypes, Global Journal of Biotechnology & Biochemistry, 4 (1) (2009) 01-09.

[62] M.A. Rashed, Estimation of genetic diversity among thirty bread wheat varieties by RAPD analysis, Journal os Applied Sciences Research, 4 (12) (2008) 1898-1905.

[63] D. Chakrabarty, S.K. Datta, Application of RAPD markers for characterization of γ-ray-induced rose mutants and assessment of genetic diversity, Plant Biotechnology Reports, 4 (3) (2010) 237-242.